图2。脑电图超系统设置的图。这使用一个单个,64通道的EEG放大器,该放大器作为输入每个32个电极的输入。用于高压扫描,每个参与者的头部都放置了一束32个电极。将每个参与者头皮上的地面电极连接到连接到放大器上的接地输入的地面分配器设备(脑产品)。eog是使用在每个参与者的眼睛周围放置的双极对电极捕获的,该电极通过脑产品Bip2aux设备连接到放大器上的AUX端口。音频都是使用STIMTRAK设备内置的麦克风(脑产品)记录的,该麦克风连接到EEG放大器。因此,来自两个参与者的脑电图以及在研究期间的音频是通过单个放大器和记录计算机同步记录到一个数据文件的。
图1 AD和E/I不平衡预测的光谱属性的变化来自经常性网络模型。(a)网络模型的概述,其中包括两种类型种群之间的复发连接:兴奋性细胞(E)和抑制细胞(i)。(b)来自模型模拟的1/F斜率是突触电导(G e g i)与多项式回归模型拟合之间比率的函数。(c)HC2,HC3和AD组的所有个体以及所有电极位置的所有个体的归一化功率谱。仪表板线对应于光谱拟合,包括上的和周期性成分。(d)G e g i的平均差异的地形表示。(e)对电极特定子集的G e g i变化的预测(P和D分别表示双面t检验和Cohen效应大小的P值)。
4化学系,Sri Guru Teg Bahadur Khalsa学院,Anandpur Sahib-140118,印度旁遮普邦。 摘要:超级电容器(SC)的高效电极材料的发展引起了人们的重大关注,由于其高孔隙率,成本效益,合成性易于合成和可调电导率,导致聚合物(CPS)作为有希望的候选者出现。 但是,CP通常在循环稳定性和能量密度方面面临局限性。 最近的研究集中在CP与金属氧化物(MOS)和碳基材料的协同整合,形成复合电极,具有增强的电导率,机械耐用性和改善的电化学性能。 本评论突出了将CP与MOS和石墨烯衍生物相结合以解决这些局限性的新方法,从而导致了较高的能量存储能力。 通过概述该领域的最新进展,我们旨在阐明这些协同相互作用及其对电极性能的影响的机制。 本文强调了下一代超级电容器设计中创新的潜力,为更高效,更耐用的储能解决方案铺平了道路。4化学系,Sri Guru Teg Bahadur Khalsa学院,Anandpur Sahib-140118,印度旁遮普邦。摘要:超级电容器(SC)的高效电极材料的发展引起了人们的重大关注,由于其高孔隙率,成本效益,合成性易于合成和可调电导率,导致聚合物(CPS)作为有希望的候选者出现。但是,CP通常在循环稳定性和能量密度方面面临局限性。最近的研究集中在CP与金属氧化物(MOS)和碳基材料的协同整合,形成复合电极,具有增强的电导率,机械耐用性和改善的电化学性能。本评论突出了将CP与MOS和石墨烯衍生物相结合以解决这些局限性的新方法,从而导致了较高的能量存储能力。通过概述该领域的最新进展,我们旨在阐明这些协同相互作用及其对电极性能的影响的机制。本文强调了下一代超级电容器设计中创新的潜力,为更高效,更耐用的储能解决方案铺平了道路。
由于单结钙钛矿太阳能电池(PSC)器件的光电转换效率(PCE)从3.8%1提高到25.7%2,作为最有前途的光伏器件之一,吸引了全世界的目光。然而,电极材料(如金或银)和有机空穴传输材料(如2,2 0 ,7,7 0 -四[N,N-二(4-甲氧基苯基)氨基]-9-9 0 -螺二芴,螺-OMeTAD)的成本较高,一定程度上限制了其商业化。碳的功函数(5.0 eV)与金的功函数(5.1 eV)相近3,理论上可以替代金作为PSC器件的对电极。2014年,H. Han教授等在Nature Communications上发表了题为“Better to the PSC”的文章。首次提出了一种基于碳电极的新型无HTM(空穴传输材料)全可印刷介观钙钛矿太阳能电池(p-MPSC)。4
场发射电推进 (FEEP) 基于从液态金属中提取和电离推进剂,该过程可以在 1Vnm -1 量级的场强下发生。为了达到必要的局部场强,液态金属通常悬浮在针状尖锐发射器结构上。已经研究了通过毛细管力进行被动推进剂输送的不同配置,包括毛细管几何形状、外部润湿针和多孔针状结构。液态金属的静电应力超过某个阈值会导致金属变形为泰勒锥 7 ,从而进一步增加锥顶点的局部场强,最终实现粒子提取。在 FEEP 装置中,静电势施加在金属发射器和称为提取器的对电极之间,其设计用于最大限度地提高发射离子的透明度。在这样的几何结构中,离子随后被用于提取和电离的相同电场加速,从而使该过程非常高效。
在两个电极之间传输。已经对锂离子电池进行了广泛的研究,但几个关键过程,主要与它们对电极的反应性有关,但仍有几个关键过程尚待充分说明。[1]没有电解质在锂离子电池的负石墨电极上本质上是稳定的,而可逆细胞化学反应强烈依赖于固体电解质相(SEI)的形成。SEI是一个NM薄的多相复合层,通常是在锂离子电池的第一个电荷/放电周期之后从电解质的降解产物中形成的石墨。尽管几十年前已经建立了关于SEI重要性的一般性感,但其形成和操作机制仍在激烈地进行辩论。尽管如此,通常观察到SEI的性能在很大程度上取决于使用的电溶剂。可行的锂离子电池电解质上的溶剂上的必需需求是高电介质构造,低粘度,较大的液体温度间隔和与所有细胞成分接触的稳定性。[1]
染料敏化太阳能电池 (DSSC) 是一种有前途的光伏 (PV) 技术,适用于需要高美学特征和能量生产的应用,例如建筑一体化光伏 (BIPV)。在此背景下,由于通过分子工程开发了新的敏化剂,DSSC 具有波长选择性。染料研究的悠久历史为该技术提供了不同的颜色以达到全色光吸收。然而,近 45% 的阳光辐射位于近红外 (NIR) 区域,而人类视锥细胞对此区域不敏感。本综述为读者提供了有关如何选择性地利用该区域以基于 DSSC 技术开发无色透明 PV 的关键信息。除了选择性 NIR 吸收剂外,三联光阳极、对电极和氧化还原介质共同有助于实现高美学特征。本文结合 BIPV 应用讨论了所有组件的详细信息、相互作用以及实现无色透明 NIR-DSSC 的技术限制。
可植入神经微探针在神经科学研究中被广泛用于对大脑深部区域的神经活动进行化学和电生理记录。1–5 探针通常与局部化学输送系统结合使用,以操纵神经回路。传统上,为了同时电化学记录多种分析物(例如多巴胺、谷氨酸和乙酰胆碱),这些分析物共同控制复杂的行为和化学调节,需要多个植入物,包括 (1) 用于不同分析物的多个电化学传感器;(2) 对电极 (CE) 和参考电极 (RE),或 RE 也充当 CE;以及 (3) 独立的微注射器,与传感电极 6–8 的柄分离或手动粘合到传感电极 6–8 上,用于化学输送(图 1a,左)。这种方法需要长时间的外科植入程序,并会对大脑造成严重损伤。此外,分离的化学输送装置、传感电极和 RE 之间的相对距离可能难以控制,从而妨碍实验的可重复性并引入基线噪声的变化 9 。因此,开发一种将这些单独组件集成到单个植入式设备中的多功能探头是十分有必要的(图 1a,右)。
摘要:光电电池是一种带有光敏电极的电池,最近被提出作为一种在单个设备中同时捕获和存储太阳能的方法。尽管有报道称可以使用多种不同的电极材料进行光充电,但其整体运行机制仍不太清楚。在这里,我们使用原位光学反射显微镜研究 Li x V 2 O 5 电极中的光诱导充电。我们在三种条件下对电极进行单粒子成像:(a) 有闭路和光但没有电子电源(光充电),(b) 在有光的恒电流循环过程中(光增强),以及 (c) 有热但没有光(热)。我们证明光确实可以驱动 Li x V 2 O 5 中的锂化变化,同时保持电荷中性,可能是通过单个粒子中发生的法拉第效应和非法拉第效应的组合。我们的研究结果为光电电池机械模型提供了补充,强调了基于插层的充电和锂浓度极化效应都有助于提高光充电容量。关键词:光学显微镜、光电电池、氧化钒、原位成像
由于响应特性相似,使用单个电阻半导体传感器监测和分类不同气体具有挑战性。分离的传感器阵列可用作电子鼻,但这种阵列结构庞大,制造工艺复杂。在此,我们轻松制造了一个基于边缘生长的 SnO 2 纳米线的气体传感器阵列,用于实时监测和分类多种气体。该阵列由四个传感器组成,设计在玻璃基板上。SnO 2 纳米线从电极边缘在芯片上生长,相互接触,并充当传感元件。这种方法比后合成技术更有优势,因为 SnO 2 纳米线直接从电极边缘生长,而不是在表面上生长。因此,通过在高生长温度下将 Sn 与 Pt 合金化可以避免对电极造成损坏。进一步检查了传感器阵列对不同气体的传感特性,包括甲醇、异丙醇、乙醇、氨、硫化氢和氢气。雷达图用于改善对不同气体的选择性检测并实现有效分类。© 2020 作者。由 Elsevier BV 代表河内越南国立大学提供出版服务。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。