有机分子晶体,例如对苯二酚笼状物,可能是很有前途的储氢材料。笼状物是由客体分子(这里是 H 2 )和形成空腔的宿主分子组成的超分子化合物。对苯二酚 (HQ) 与气体(例如 CO 2 1 或 CH 4 2 )的形成在文献中是众所周知的。但是,对于氢气捕获,一些重要的限制限制了这种材料的发展,例如高压和低笼状物形成动力学。Han 等人 3 通过预先形成无客体结构,然后在 350 bar 下用 H 2 填充它,获得了氢 HQ-笼状物。人们还进行了其他尝试来提高对苯二酚笼状物的存储容量,例如添加 C 60 4,但迄今为止尚未发现最佳系统。本研究开发的策略是将对苯二酚浸渍在多孔材料的微孔内,以利用限制效应来启动限制包合物的形成并改善包合动力学。为此,开发了一种新颖的浸渍方法,并在几种具有不同化学性质(碳、聚合物、二氧化硅)和不同孔径(1 至 15 纳米之间)的材料上进行了测试。使用 TGA-DSC、氩气孔隙率仪和 MAS-NMR 来表征新型复合材料。有机晶体的浸渍率可达到混合材料质量的 35%。用磁悬浮天平测量氢的存储容量。对于浸渍在多孔聚苯乙烯基材料中的 HQ 的情况,通过将温度在 0 到 100°C 之间循环可以达到 HQ 包合物的形成。在 20 bar 氢气压力下,经过 10 个温度循环,样品的存储容量从每克样品 0.1 wt.% 增加到每克 HQ 1.3 wt.%(或每克 HQ 7 wt.%)。此外,该系统在室温下稳定,P = 1 bar 氢气压力下,每克 HQ 的存储容量为 5.7wt.% H 2,并且在 100°C 时可完全释放 H 2。使用 MCM-41+HQ 等其他材料也获得了类似的存储容量。
柔红霉素 (DNR) 是蒽环类抗生素的抗肿瘤药物,来源于突变分离株波塞链霉菌 caesius 变种 [12]。这些蒽环类抗生素包括阿霉素、伊达比星和表柔比星 [13]。柔红霉素的化学式为 C27H29NO10 ∙ HCl,分子量为 563.99,5 mg/ml 溶液的 pH 值为 4.5-6.5 [6]。柔红霉素的结构含有苷元和糖基(图 1)。苷元基团由四环组成,C 和 B 环上有醌和对苯二酚基团,D 环上 C-4 位有甲氧基,A 环上 C-9 位有侧链,C-13 位有羰基。被称为柔红糖胺的糖基通过糖苷键连接到A环的C-7位,并在C-3位有一个胺基[14]。
我们维持对 Clean Science and Technology (CSTL) 的卖出评级,目标价为 1,037 印度卢比(加权平均资本成本 11%,终端增长率 6%),原因是 (1) 受阻胺光稳定剂 (HALS) 的增长速度低于预期,以及 (2) 国内竞争对手进入对苯二酚单甲醚 (MEHQ) 制造领域。我们认为 CSTL 在 HALS 方面有进口替代机会。然而,竞争对手即将扩大 HALS 产能,需求增长放缓,仍将对 HALS 收入增长构成挑战。因此,HALS 收入增长可能低于我们之前的预期。我们对 HALS 在 25 财年和 26 财年的收入预期较低。EBITDA 和 PAT 在 24 财年-27 财年的复合年增长率将达到 23/23%。预计 RoE 将从 24 财年的 21.6% 提高到 27 财年的 22.2%。我们认为,估值处于较高水平,分别为 41/34/31 倍 FY25E/26E/27E EPS。
衍生因素在黄褐斑发病机制中的作用。临床和实验皮肤病学,41,601-609。https://doi.org/10.1111/ ced.12874 Cardinali, G., Ceccarelli, S., Kovacs, D., Aspite, N., Lotti, LV, Torrisi, MR, & Picardo, M. (2005)。角质形成细胞生长因子促进黑素体转移到角质形成细胞。皮肤病学研究杂志,125 (6), 1190-1199。https://doi. org/10.1111/j.0022-202X.2005.23929.x Cardinali, G., Ceccarelli, S., Kovacs, D., Aspite, N., Lotti, LV, Torrisi, MR, & Picardo, M. (2005). 角质形成细胞生长因子促进黑色素体转移到角质形成细胞。《皮肤病学研究杂志》,125,1190-1199 页。https://doi. org/10.1111/j.0022-202X.2005.23929.x Castellino, FJ, & Ploplis, VA (2005). 纤溶酶原/纤溶酶系统的结构和功能。血栓形成和止血, 93 (4), 647–654。https://doi.org/10.1160/TH04-12-0842 Chan, R., Park, KC, Lee, MH, Lee, ES, Chang, SE, Leow, YH, Tay, YK, Legarda-Montinola, F., Tsai, RY, Tsai, TH, Shek, S., Kerrouche, N., Thomas, G., & Verallo-Rowell, V. (2008)。一项随机对照试验,比较固定三联组合(氟轻松 001、对苯二酚 4、维甲酸 005)与对苯二酚 4 乳膏治疗中度至重度黄褐斑亚洲患者的疗效和安全性。英国皮肤病学杂志, 159 (3):697–703。 Chang, GC, Yang, TY, Chen, KC, Yin, MC, Wang, RC, & Lin, YC (2004)。癌症患者治疗的并发症。临床肿瘤学杂志,22,4646–4648。https://doi.org/10.1200/ JCO.2004.02.168 Chang, WC, Shi, GY, Chow, YH, Chang, LC, Hau, JS, Lin, MT, Jen, CJ, Wing, LY, & Wu, HL (1993)。人纤溶酶诱导内皮细胞中受体介导的花生四烯酸释放与 G 蛋白结合。美国生理学杂志,264 (2 Pt 1),C271–C281。 https://doi.org/10.1152/ajpcell.1993.264.2.C271 Cichorek, M.、Wachulska, M.、Stasiewicz, A. 和 Tymińska, A. (2013)。皮肤黑素细胞:生物学和发育。皮肤病学和过敏学进展,30 (1),30–41。https://doi.org/10.5114/pdia.2013.33376 Darji, K.、Varade, R.、West, D.、Armbrecht, ES 和 Guo, MA (2017)。寻常痤疮患者炎症后色素沉着的社会心理影响。临床与美容皮肤病学杂志,10 (5),18–23。Davis, EC 和 Callender, VD (2010)。炎症后色素沉着:有色皮肤流行病学、临床特征和治疗选择的综述。临床和美容皮肤病学杂志,3 (7),20–31。Duval, C., Chagnoleau, C., Pouradier, F., Sextius, P., Condom, E., & Bernerd, F. (2012)。含有黑色素细胞的人体皮肤模型:角质形成细胞生长因子对组成性色素沉着的重要作用——对 α -黑素细胞刺激激素和福斯高林的功能性反应。组织工程 C 部分:方法,18 (12),947–957。https://doi.org/10.1089/ten.tec.2011.0676 Gilchrest, BA, Soter, NA, Stoff, JS, & Mihm, MC Jr (1981)。人类晒伤反应:组织学和生化研究。美国皮肤病学会杂志,5,411–422。https://doi.org/10.1016/S0190-9622(81)70103-8
文章历史:收到日期:2024 年 9 月 12 日/接受修订版日期:2024 年 11 月 16 日 © 2012 伊朗药用植物协会。保留所有权利 摘要 酪氨酸酶是黑色素合成的关键酶。因此,许多酪氨酸酶抑制剂已经在化妆品和药物中进行了测试。本研究的目的是比较没食子酸和 α-蒎烯的抗酪氨酸酶潜力。初步分析是使用分子对接方法进行的。然后,使用蘑菇酪氨酸酶进行实验室实验,以儿茶酚为底物,曲酸为酶的标准抑制剂。使用 DPPH 自由基评估没食子酸和 α-蒎烯的抗氧化活性。对接得分显示没食子酸对酪氨酸酶具有强结合亲和力(ΔG = -6.33 Kcal/mol),与Met 280形成H键,与His 263形成π-π堆积。α-蒎烯只能通过疏水相互作用与活性口袋结合,导致结合亲和力较低(ΔG = -3.89 Kcal/mol)。没食子酸表现出最高的抑制效果(IC 50 = 0.130 mg/mL),而α-蒎烯表现出较低的抑制能力(IC 50 = 0.392 mg/mL)。抑制类型为曲酸的竞争性抑制和没食子酸的非竞争性抑制。在DPPH自由基清除测试中,没食子酸和α-蒎烯的EC 50值分别为0.269 mg/mL和251.2 mg/mL。计算机模拟和实验室结果几乎相同。尽管 α-蒎烯对酪氨酸酶的抑制剂作用不如没食子酸强,但增加其浓度或许可以增强其作用。没食子酸的抗氧化潜力明显高于 α-蒎烯,因此从这个角度来看,没食子酸更无害,安全性更高。 关键词:酪氨酸酶,α-蒎烯,没食子酸,黑色素 引言 酪氨酸酶 (EC 1.14.18.1) 属于 3 型含铜蛋白家族 [1]。保守活性位点中的两个铜离子 Cu-A 和 Cu-B 由 6 个组氨酸残基配位 [2]。酪氨酸酶也是节肢动物角质层形成和植物褐变的重要因素 [3]。它还参与伤口愈合、紫外线防护和酚类解毒 [4]。酪氨酸酶和氧化酶一样,是许多生物体黑色素生成的基本酶,对色素沉着至关重要。催化 L-酪氨酸转化为 L-多巴是黑色素形成酶促途径的限速步骤 [5]。1895 年,Bourquelot 和 Bertrand 首次从蘑菇中分离出酪氨酸酶。此后,酪氨酸酶已从多种细菌、真菌、植物和动物来源中分离和纯化。酪氨酸酶的结构包含三个结构域:N 端、中心和 C 端结构域 [6]。酪氨酸酶抑制剂种类繁多,其中大多数已用商业蘑菇酪氨酸酶进行测试,与哺乳动物酪氨酸酶相矛盾。然而,最近的研究报告显示,蘑菇酪氨酸酶和人类酪氨酸酶的抑制剂效果存在显著差异 [7]。几种酪氨酸酶抑制剂的抑制效果表明,抗坏血酸是人类酪氨酸酶和蘑菇酪氨酸酶的最佳抑制剂,并且以最低 IC 50 值来衡量 [8]。对苯二酚、曲酸和熊果苷是最著名的酪氨酸酶抑制剂,但它们具有严重的副作用,例如永久性脱色、红斑和接触性皮炎 [9]。此外,Chiari 等人对来自阿根廷中部的 91 种本土植物进行了酪氨酸酶抑制活性研究 [10]。尽管已报道了许多合成酪氨酸酶抑制剂,但只有熊果苷和曲酸等少数几种在商业上得到使用,主要是因为其具有细胞毒性高、穿透力不足、活性低和稳定性低等缺点 [11]。