摘要:在这项研究中,通过在SI底物上的纳米结构NIO的直接自旋涂层制造了基于石墨烯/Nio/N-Si的自动宽带光电探测器。Nio/Si异质结构的Curren T – V Oltage测量表现出在光照明下具有增强的pho-drumerent的整流特性。在300 nm至800 nm的范围内测量了光反检测能力,并且由于NIO的宽带隙,观察到紫外线区域的较高光响应。顶部的石墨烯透明导电电极的存在进一步增强了整个测得的波长区域的响应性,从350至800 nm。,在插入石墨烯顶层时,发现NiO/Si检测器在350 nm处的光响应从0.0187增加到0.163 a/w。在零偏置处的高摄影电流比(≃104)表明该设备在节能高性能宽带光电检查器中具有有利的应用。
电子和空穴对以及(ii)强氧化还原电位以支持材料间的高电子转移。2先进纳米结构和纳米层状光催化剂的出现为多学科研究开辟了道路,旨在定制物理化学、结构和光电特性,以促进增强有机污染物的催化作用。增强催化性能和材料可见光活化的选择包括半导体的金属或非金属掺杂3和石墨烯等催化纳米结构的缺陷工程。4最有前途的工程策略涉及电子屏障的设计,它被引入导电层和半导体层的交界处。5导电层(通常是金属或碳表面)与半导体材料(通常是金属氧化物)之间的界面可能导致两种类型的结的形成,即欧姆结或肖特基结。 6 一方面,当半导体材料提供比导电材料更高的功函数时,就会形成欧姆结。 7 然而,欧姆接触在金属和导电材料之间提供了持续的电子流。
摘要:本文报告了应用卢瑟福背散射光谱 (RBS) 研究硅中植入的铁和钴原子的分布曲线随辐射剂量和退火温度变化的结果。研究了热退火对铁、钴,特别是氧的分布的影响。作者强烈建议,在某些热处理条件下,通过施加特定的辐射剂量,所谓的外延硅化物将在单晶表面形成,这些硅化物可以起到导电层或金属层的作用。可以考虑使用 RBS 方法来分析掺杂剂的拓扑分布和杂质的相互作用。关键词:杂质、分布、影响、热退火、植入原子、薄层、深度、辐射剂量、结构、薄膜 ________________________________________________________________________________________ 1. 简介
近年来,量子点材料作为光子吸收剂引起了人们的注意。它们的出色特性,包括高吸收系数,长载体扩散长度和低温兼容沉积,使其成为适合在多个光谱频段(例如可见的,近乎红外和X射线)中检测光子的合适候选物。这已被利用以开发宽光谱范围的图像传感器。图1显示了在CMOS芯片顶部沉积的量子点层的概念。CMOS过程的顶部金属用作与堆叠的量子点光子吸收器接触的像素底部电极。公共顶部电极由透明的导电层制成。
摘要 量子点发光器件已成为显示应用的重要技术。它们的发射是分别通过空穴和电子导电层传输的正负电荷载流子复合的结果。这些器件中电子或空穴传输材料的选择不仅要求层间能级对齐,而且还要求平衡电子和空穴向复合位点的流动。在这项工作中,我们研究了一种通过控制电荷载流子动力学来优化器件的方法。我们采用阻抗谱来检查电荷载流子通过每一层的迁移率。得出的迁移率值提供了一条路径来估算每个电荷载流子向发光层的跃迁时间。我们认为,当两个电荷载流子向有源层的跃迁时间相似时,可以获得最佳器件结构。最后,我们通过重点优化电子传输层的厚度来检验我们的假设。
石墨烯是一种由单层碳原子组成的二维蜂窝状晶格。它是各种尺寸石墨材料的基础,包括富勒烯、纳米管和石墨。过去 60 年来,人们对石墨烯进行了理论研究 [ 2 ]。该材料的独特性质包括较大的比表面积(~ 2600 m 2 /g)、较高的电子迁移率(200,000 cm2/Vs)、较高的热导率(3000-5000 Wm/K)、极高的光学透明度(97.4%)和出色的机械强度(杨氏模量为 1 TPa)[ 3 ]。石墨烯出色的电子迁移率使其非常适合需要快速响应率的半导体器件。其优异的导电性和高光学透明度使其可用作光子器件中的透明导电层。此外,石墨烯在防腐涂层、传感器技术、可穿戴电子产品、柔性显示器、太阳能发电、加速DNA等各个领域都显示出巨大的潜力
电子束光刻:根据应用,将电子束光刻胶 (950K PMMA A4,MicroChem) 旋涂至 270 nm-330 nm 的厚度。接下来,在顶部热蒸发 20 nm Au 的导电层,以避免光刻过程中电荷积聚。为了进一步减轻充电效应,我们使用了相对较低的束电流 (0.3 nA)、多通道曝光 (GenISys BEAMER) 和减少电子束在一个区域持续停留时间的写入顺序。光刻胶的总曝光剂量为 1200 uC/cm2,电压为 100 kV (Raith EBPG5000 plus)。曝光后,我们用 TFA 金蚀刻剂 (Transene) 去除导电层,并在 7 C 的冷板上将光刻胶置于 1:3 MIBK:IPA 溶液中显影 90 秒,然后用 IPA 封堵 60 秒,再用 DI 水冲洗。原子层沉积:在进行 ALD 之前,我们在 ICP RIE 工具 (PlasmaTherm Apex) 中使用 10 sccm O2 和 50 W ICP 功率进行三秒等离子曝光,以去除残留聚合物。使用此配方,PMMA 蚀刻速率约为 2.5 nm/s。对于 TiO 2 沉积,我们使用商用热 ALD 室 (Veeco/Cambridge Savannah ALD)。使用四(二甲酰胺)钛 (TDMAT) 和水在 90 C 下沉积非晶态 TiO 2,交替脉冲分别为 0.08 秒和 0.10 秒。沉积期间连续流动 100 sccm N 2,前体脉冲之间的等待时间为 8 秒。沉积速率通常为 0.6 A/循环。 ICP 蚀刻程序:我们通过氯基 ICP RIE 蚀刻(PlasmaTherm Apex)去除过填充的 TiO 2,基板偏压为 150 W,ICP 功率为 400 W,Cl 2 为 12 sccm,BCl 为 8 sccm。蚀刻速率通常为 1.5-1.7 nm/s。SEM 成像:在 5 nm Cr 导电层热沉积后,使用 Carl Zeiss Merlin FE-SEM 对纳米光子结构进行成像。FDTD 模拟:使用 Lumerical 有限差分时域软件模拟环形谐振器、光子晶体腔和光栅耦合器。透射光谱:我们使用自制的共焦显微镜装置,该装置具有独立的收集和激发通道,以进行透射光谱。脉冲超连续源 (430-2400 nm,SC-OEM YSL Photonics) 和光谱仪 (1200 g/mm,Princeton Instruments) 用于宽带测量。为了对单个腔体谐振进行高分辨率扫描,我们使用 50 kHz 线宽、可调 CW 激光器 (MSquared) 进行激发,并使用雪崩光电二极管 (Excelitas) 进行检测。金刚石膜:通过离子轰击 34 生成 500 nm 厚的金刚石膜,并在阿贡国家实验室通过化学气相沉积进行覆盖。在对离子损伤层进行电化学蚀刻后,去除悬浮膜并用 PDMS 印章翻转。然后使用 ~500 nm 的 HSQ 抗蚀剂将它们粘附到 Si 载体上,并在氩气中以 420 C 的温度退火 8 小时。最后,使用 ICP 蚀刻法将膜蚀刻至所需厚度,蚀刻气体为 25 sccm Ar、40 sccm Cl2、400 W ICP 功率和 250 W 偏压功率。蚀刻速率通常为 1.2-1.4nm/s。
Sai Praneeth Thota, 1, 2,* Partha Pratim Bag, 1 Praveen Venkata Vadlani 3 和 Siva Kumar Belliraj 2, 4,* 摘要 利用植物基生物资源探索和开发用于长期可持续能源存储的新型纳米材料,可以提高能源供应市场的成本竞争力和减少环境影响,并满足绿色和可持续发展战略的迫切需求。 能源存储领域的最新研究趋势是专注于存储设备,包括超级电容器 (SC)、锂离子电池、燃料电池和铅酸电池。 超级电容器因其在功率和能量密度方面的卓越性能以及延长的使用寿命和在电动汽车、便携式电子设备以及固定电网等应用中的简便操作条件而具有吸引力。 由于超级电容器是由不可再生和化石资源构成的,因此迫切需要替代有效的材料。 来自可再生生物质来源的多维高孔隙率纳米结构碳可能是超级电容器电极材料的有前途的更绿色替代品。在 SC 中,源自生物质的多孔纳米碳充当电极表面的导电层。电导率、电解质的可及性、孔结构和形状、孔径分布以及高表面积对 SC 的比电容起着重要作用。本综述包括用于 SC 专用储能设备的生物质衍生多维纳米碳电极材料的最新研究平台及其未来前景。
反应性直流磁控溅射是一种理想的技术,可用于生产具有可控微结构和特性的氧化物、氮化物和碳化物薄膜。随着分压控制技术的出现,可以以接近金属(如 TiN、ZrN)的溅射速率,或至少以比传统 RF 溅射(如 TiO 2 )更高的速率溅射导电反应产物(氧化物、氮化物和碳化物)。但在沉积非导电材料(如 Al 2 O 3 和 SiO 2 )方面仍然存在严重的限制,因为在溅射靶上形成非导电层会导致电弧。虽然这些薄膜可以通过 RF 磁控管或 RF 二极管技术溅射,但对于许多应用来说,这种速率是不经济的。电源设计和构造方面的最新电子发展已经产生了能够进行双极脉冲直流操作的商用设备。该设备可以以高速率反应溅射非导电材料。所涉及的频率(kHz 至 100 kHz)比 RF 频率(13.56 MHz)低得多,并且在集成到物理系统方面出现的问题较少。控制和电子干扰问题几乎被消除。我们报告了使用这种商用设备对脉冲直流反应溅射的初步评估。