摘要 — 已经开发出一种支持新型微电子集成范式的工具,通过微同轴导线键合直接建立组件之间的互连。该工具的近期用例是促进高带宽系统的快速原型设计。当进一步成熟时,它将能够以最短的设计时间快速集成具有数百或数千个互连的复杂系统。总直径在 50 到 100 毫米之间的同轴导线的自动剥离和键合带来了一系列工艺挑战,对导线的材料系统和键合工具提出了有趣的要求。本研究回顾了 Draper 目前正在开发的一种微同轴键合系统,该系统能够剥离、送料和键合微同轴导线。该系统利用电火焰熄灭和热回流的组合分别剥离外部金属屏蔽层和聚合物介电层。它利用旋转送丝机制精确控制导线位置,从而可以确定预定的导线长度。回顾了电线、工具和软件控制架构设计的进展。
架空输电线支撑结构强度的设计受风阻影响很大,其设计主要是为了承受台风期间线路和支撑塔本身承受的荷载(设计风速 40 米/秒)。当它们位于台风经过时会产生强烈局部风的地形中时,会增加风荷载 1),这往往会增加建设成本。导线上的阻力通常占总阻力的 50-70%,导线阻力的任何减少都会减少支撑塔上的负载,从而可以在不影响可靠性的情况下降低成本。作者注意到,圆柱体的阻力系数开始下降时的风速会因表面粗糙度而降低 2) ,而高尔夫球由于表面有凹坑而飞得更远 3) ,因此得出结论:通过关注导体的表面形态,可以在输电线设计的风速范围内降低导体的阻力系数。因此,我们提出了具有减小阻力的导体,其表面设有凹槽(LP 810 毫米 2 减小阻力的导体和 LNP 810 毫米 2 减小噪音和阻力的导体)。我们还进行了高达 80 的风洞实验
摘要:背景:β频率振荡(13 – 30 Hz)是帕金森病患者的丘脑底标志,人们对其作为术中标记物的效用越来越感兴趣。目的:本研究的目的是评估直接从深部脑刺激导线的大接触测量的β活动是否可以用作(a)指导导线放置的术中电生理学方法和(b)用于生理学刺激传递。方法:沿着手术轨迹每一毫米从每个大接触收集局部场电位数据,并计算和可视化功率谱密度(n = 39 名患者)。这是为在线术中功能映射和事后统计分析而进行的,使用两种方法:生成沿手术轨迹的频谱活动分布和直接描绘(存在与否)β峰。在部分患者中,这种方法得到了微电极记录的证实。此外,最终目标处的β峰之间的匹配率
1。Kramer A, Seifert J, Abele-Horn M, Arvand M, Biever P, Blacky A, Buerke M, Ciesek S, Chaberny I, Deja M, Engelhart S, Eschberger D, Gruber B, Hedtmann A, Heider J, Hoyme UB, Jäkel C, Kalbe P, Luckhaupt H, Novotny A, Papan C, Piechota H,Pitten FA,Reinecke V,Schilling D,Schulz-Schaeffer W,Sunderdiek U. S2K-Guideline手工反杂质和手动卫生。GMS HYG感染控制。 2024年9月6日; 19:doc42。 doi:10.3205/dgkh000497GMS HYG感染控制。2024年9月6日; 19:doc42。doi:10.3205/dgkh000497
摘要 量子计算机面临的一个主要挑战是可扩展的量子门同时执行。在囚禁离子量子计算机中解决这一问题的一种方法是基于静态磁场梯度和全局微波场实现量子门。在本文中,我们介绍了表面离子阱的制造方法,其中集成的铜载流导线嵌入在离子阱电极下方的基板内,能够产生高磁场梯度。在室温下测得的铜层薄层电阻为 1.12 m Ω /sq,足够低,可以实现复杂的设计,而不会在大电流下产生过多的功率耗散导致热失控。在 40 K 的温度下,薄层电阻降至 20.9 μ Ω /sq,残余电阻比的下限为 100。可以施加 13 A 的连续电流,导致在离子位置处模拟磁场梯度为 144 T m − 1,对于我们设计中的特定反平行线对,该位置距离陷阱表面 125 μ m。
任何输电系统的核心都是将电力从发电地输送到消耗地的电线。先进的输电导线是一种可用于提高输电容量增长速度的技术,与传统导线相比,成本更低,对社区的影响更小。这些创新资产改进了传统导线的许多属性,提高了容量、效率和机械性能。至关重要的是,先进的导线可用于升级现有的输电线路,通过更换现有输电结构上的现有导线,通过称为重新导线的过程提高线路性能。
测量元件 (Rx) 的电阻时,测试电流会强制流过元件,测试仪表会测量其端子处的电压。然后,仪表会计算并显示所得电阻,这称为两线测量。需要注意的是,仪表测量的是其端子处的电压,而不是元件两端的电压。因此,连接导线两端的电压降也包含在电阻计算中。优质测试导线的电阻约为每米 0.02 Ω。除了导线的电阻外,导线连接的电阻也包含在测量中,其值可能与导线本身一样高,甚至更高。
掺杂剂诱导溶解度控制 (DISC) 聚合物半导体图案化技术的最新进展已使聚-3-己基噻吩 (P3HT) 的直接写入光学图案化成为可能,且分辨率达到衍射极限。在这里,我们将光学 DISC 图案化技术应用于最简单的电路元件——导线。我们展示了 P3HT 和掺杂有分子掺杂剂 2,3,5,6-四氟-7,7,8,8-四氰基醌二甲烷 (F4TCNQ) 导线的 P3HT 的光学图案化,尺寸为厚度 20-70 nm、宽度 200-900 nm 和长度 40 µ m。此外,我们还展示了“L”形弯曲和“T”形结等导线图案的光学图案化,而无需改变结处导线的直径或厚度。经过连续掺杂后,导线本身的电导率高达 0.034 S/cm。我们还证明了 P3HT 纳米线可以在溶液中掺杂、去掺杂和再掺杂,而不会改变导线的尺寸。光学图案化和可逆掺杂聚合物半导体的综合能力代表了一套完整的图案化步骤,相当于无机半导体的光刻技术。
掺杂剂诱导溶解度控制 (DISC) 聚合物半导体图案化技术的最新进展已使聚-3-己基噻吩 (P3HT) 的直接写入光学图案化成为可能,且分辨率达到衍射极限。在这里,我们将光学 DISC 图案化技术应用于最简单的电路元件——导线。我们展示了 P3HT 和掺杂有分子掺杂剂 2,3,5,6-四氟-7,7,8,8-四氰基醌二甲烷 (F4TCNQ) 导线的 P3HT 的光学图案化,尺寸为厚度 20-70 nm、宽度 200-900 nm 和长度 40 µ m。此外,我们还展示了“L”形弯曲和“T”形结等导线图案的光学图案化,而无需改变结处导线的直径或厚度。经过连续掺杂后,导线本身的电导率高达 0.034 S/cm。我们还证明了 P3HT 纳米线可以在溶液中掺杂、去掺杂和再掺杂,而不会改变导线的尺寸。光学图案化和可逆掺杂聚合物半导体的综合能力代表了一套完整的图案化步骤,相当于无机半导体的光刻技术。
图 2 。丘脑底和皮质导线的解剖和生理定位(示例来自 RCS04)。a、STN 触点相对于微电极映射定义的 STN 边界(蓝色轮廓)的定位。微电极图(绿线)显示 STN 的边界,其由具有典型 STN 单元放电模式和速率的细胞(红点)定义。DBS 导线的预期深度由此图确定,并标记接触号。中间触点(1 和 2)位于 STN(运动区)背侧 4 毫米内。黑点是黑质网状部中的细胞。b、从硬膜下桨状导线记录的体感诱发电位(来自正中神经的刺激),由三个重叠的接触对拼接而成。 8-9 对和 9-10 对之间的 N20 电位反转(箭头)表明触点 9 定位到主电机