硅在半导体技术中的蓬勃发展与控制其晶格缺陷密度的能力密切相关 [1]。在 20 世纪上半叶,点缺陷被视为对晶体质量的危害 [2],如今它已成为调节这种半导体电学性质的重要工具,从而推动了硅工业的蓬勃发展 [1]。进入 21 世纪,硅制造和注入工艺的进步引发了根本性变革,使人们能够在单个层面上控制这些缺陷 [3]。这种范式转变将硅带入了量子时代,如今单个掺杂剂被用作可靠的量子比特来编码和处理量子信息 [4]。这些单个量子比特可以通过全电方式有效控制和检测 [4],但其缺点是要么与光耦合较弱 [5],要么发射中红外波段的辐射 [6],不适合光纤传播。为了分离具有光学接口的物质量子比特,从而实现量子信息的长距离交换,同时又能从先进的硅集成光子学中获益 [7],一种策略是研究在近红外电信波段具有光学活性的硅缺陷 [8, 9]。
量子密钥分发 (QKD) 允许两个用户之间以无条件的安全性进行密钥交换。要广泛部署 QKD,低成本和紧凑性是高性能的关键要求。目前,大多数 QKD 系统都依赖于体强度和相位调制器来生成具有精确定义的幅度和相对相位差的光脉冲 - 即将信息编码为信号状态和诱饵状态。然而,这些调制器价格昂贵且体积庞大,从而限制了 QKD 系统的紧凑性。在这里,我们提出并通过实验演示了一种新颖的光发射器设计,通过以 GHz 时钟速度生成强度和相位可调的脉冲来克服这一缺点。我们的设计通过采用直接调制激光器结合光注入锁定和相干干涉,消除了对体调制器的需求。因此,该方案非常适合小型化和光子集成,我们实施了原理验证 QKD 演示以突出潜在应用。
光斑转换器是实现不同尺寸波导间光高效耦合的关键。虽然绝热锥形非常适合小尺寸差异,但当扩展因子达到 × 100 左右时,它们会变得太长,这在耦合集成波导和自由空间光束时通常需要。在这种情况下可以使用衰减耦合器和布拉格偏转器,但它们的操作本质上受到带宽的限制。这里,我们提出了一种基于抛物面电介质界面的解决方案,该界面将光从 0.5 µ m 宽的波导耦合到 285 µ m 宽的波导,即扩展因子为 × 570 。我们通过实验证明了前所未有的超过 380 nm 的带宽,插入损耗低于 0.35 dB 。此外,我们提供了针对任意扩展因子设计此类抛物面光斑转换器的解析表达式。
中国嫦娥六号着陆器上月球背面的首个激光反射器以及未来嫦娥七号极地任务中的部署。 Y. Wang 1 , S. Dell'Agnello 2 , K. Di 1 , M. Muccino 2 , H. Cao 3 , L. Porcelli 2 , X. Deng 3 , L. Salvatori 2 , J. Ping 4 , M. Tibuzzi 2 , Y. Li 5 , L. Filomena 2 , Z. Kang 6 , M. Montanari 2 , Z. 孟 3 , L. Mauro 2 , B. 谢 1,7 , M. Maiello 2 , 1 中国科学院空天信息研究所遥感科学国家重点实验室,北京,100101,中国 (dikc@aircas.ac.cn), 2 国家核电研究所 - 弗拉斯卡蒂国家实验室 (INFN–LNF),通过费米40,00044,意大利弗拉斯卡蒂(simone.dellagnello@lnf.infn.it),3 中国空间技术研究院北京空间飞行器总体工程研究所,北京,100094,中国,4 中国科学院国家天文台,北京,100101,中国,5 中国科学院云南天文台,昆明,650216,中国,6 中国地质大学土地科学与技术学院,北京,100083,中国,7 中国科学院大学,北京,100101,中国。
集成的布拉格光栅无处不在,在光学通信中找到了他们的主要应用。它们主要用作波长划分多路复用(WDM)的过滤器[1]。它们在激光器中用作分布式Bragg反射器(DBR)[2]和分布式反馈(DFB)激光器[3]的镜子。他们还找到了他们在传感中的应用[4]。此外,它们是集成腔分散工程的重要组成部分[5,6]。集成的Bragg反射器已使Fabry-Pérot(FP)微孔子中有趣的表演达到了实现。仔细研究这些空腔,对分散补偿策略的兴趣不大,例如,将分散元素补偿元素在空腔体系结构中[5]进行了整合。使用色散bragg反射器证明了综合微孔子中的耗散kerr孤子(DKSS)[7]。通常需要这些光源来产生非常短的脉冲持续时间,即飞秒级,用于高精度计量学级的飞秒源的应用,并用于产生跨越频率的宽带频率梳子,这些频率从数十吉赫赫兹到Terahertz。这种非线性机制开辟了增加相干光学通信系统带宽[8,9]的可能性,以满足增加的数据速率需求。最近,由两个光子晶体谐振器组成的Q-因子为10 5的纳米制作的FP谐振器已成功证明了KERR频率 - 兼而产生[10]。这个概念是在反射器的背景下进行分析描述的。因此,在FP微孔子中,布拉格反射器的广泛采用以进行分散补偿变得越来越重要。虽然用作反射器的Bragg光栅提供了广泛的功能,但设备物理学中存在一个潜在的问题。当光反射器反射光时,它不会从光栅开始的点上进行反映。为了解决这个问题,研究人员检查了渗透深度的概念或闪光的有效长度,称为l eff。该术语是指定义实际反射点的bragg反射器内的虚拟移位接口。
摘要。我们解决了平面波在由DC横向磁场控制的铁氧体1D磁磁晶体上散射的问题。基于Floquet-Bloch理论的混合边界条件的山山方程溶液以分析形式获得。明确发现色散方程及其根。根据铁氧体层的材料参数,对结构的分散性质进行分析。确定具有有限周期数量的陀螺仪的传输和反射系数。考虑了两个特征情况:旋转层有效渗透性的正值和负值。在晶体时期确定电磁场组件的空间分布的表达。结果提供了对具有控制旋转元素的多层介质中电磁波传播行为的更深入的理解。此外,获得的分析表达式简化了这种复杂介质中波过程的分析。
Microchip 多以太网供电 (mPoE) 是一种无缝高效地为任何有线网络设备供电的技术,是以太网应用的理想解决方案。该技术利用独特设计的算法,解决了不同 PoE 标准和传统解决方案之间的互操作性问题,从而提供了国际网络供电标准。作为 PoE 技术的先驱,我们提供全面的端到端 PoE 解决方案产品组合,包括 PoE IC 和 PoE 系统(中跨/注入器和交换机)。
Giuseppe Ronco, Abel Martínez-Suárez, Davide Tedeschi *, Matteo Savaresi, Aurelio Hierro-Rodríguez, Stephen Mcvitie, Sandra Stroj, Johannes Aberl, Morthij Wicktor M. García-Suárez, Michele B. Rota, Pablo Alonso- González, Javier Martín-Sánchez *和Rinaldo Trotta * div>Giuseppe Ronco, Abel Martínez-Suárez, Davide Tedeschi *, Matteo Savaresi, Aurelio Hierro-Rodríguez, Stephen Mcvitie, Sandra Stroj, Johannes Aberl, Morthij Wicktor M. García-Suárez, Michele B. Rota, Pablo Alonso- González, Javier Martín-Sánchez *和Rinaldo Trotta * div>
量子通信背景:二维材料中的单光子发射器 (SPE) 已成为量子技术和量子通信的有前途的平台。这些发射器能够产生单个光子,这对于安全通信、量子计算和其他需要操纵量子态的应用至关重要。过渡金属二硫属化物 (TMD) 等二维材料由于其原子级薄性质、强激子效应以及与其他量子器件集成的潜力,为实现 SPE 提供了独特的环境。在这些材料中,缺陷、应变和局部激子可以捕获电子和空穴,从而导致单光子的发射。此外,二维材料提供可调的电子和光学特性,可以更好地控制发射特性,例如波长和偏振。此外,基于二维材料的 SPE 的可扩展性和与现有光子和光电器件的集成使其成为未来量子技术的有力候选者。
由于运载火箭的性能与其飞行控制系统密切相关,因此航天飞行中的一个重大挑战是设计姿态控制算法,以确保运载火箭的稳定性,同时遵循确定的轨迹并抑制外界干扰。本报告旨在描述设计这种控制算法并最终评估其性能的通用方法。首先,回顾了现有的姿态控制方法并介绍了线性控制理论。然后介绍影响运载火箭的重要现象,包括刚体动力学、空气动力学、发动机惯性、下垂模式和弯曲模式。然后,使用给定的案例研究作为示例来估计描述所有这些现象的参数。然后推导线性运动方程,并提出构建车辆及其执行器的状态表示的方法。基于该线性模型,本文描述了一种逐步方法来计算用于处理所有相关现象的稳定 PID 控制器。最后,进行包括稳定性、时间响应、灵敏度和鲁棒性在内的性能分析,以评估控制器行为。