肌肉减少症是一种退化性疾病,与年龄相关的骨骼肌肉质量和力量丧失,这与发生在内的不良结果有关,包括跌倒,骨折,身体残疾和死亡。在生命发展过程中,肌肉质量的损失始于40岁,每10年减少约8%,加速至70岁以后,持续到死亡(1)。肌肉减少症的患病率很高:60-70岁的个体中有5-13%,在80岁及以上的人中为11-50%(2)。多次深入研究发现,评估肌肉力量比肌肉质量更强。结果,诸如欧洲肌肉减少症工作组(EWGSOP2)和亚洲肌肉减少症工作组(AWGS)等国际肌肉减少症研究组织(AWGS)在2019年引入了新的肌肉减少症诊断的定义,重点介绍了肌肉力量(3,4)。使用标准的组合(包括低肌肉质量,肌肉力量降低和身体表现受损)建立了肌肉减少症的诊断。具体而言,使用诸如双能X射线吸收仪(DXA)或生物电性阻抗分析(BIA)等技术评估肌肉质量。低肌肉质量的阈值定义为男性<7.0 kg/m 2,女性的阈值<5.5 kg/m 2。肌肉力量通常是通过手工束强度测试评估的,男性的截止值<27 kg,女性<16 kg。通过测量步态速度(阈值<0.8 m/s)或使用短体性能(SPPB)来测量身体表现。这些标准与欧洲老年人(EWGSOP)和其他相关指南的欧洲肌肉减少症的建议保持一致(4,5)。根据EWGSOP指南,根据低肌肉质量和低肌肉功能(力量或表现)诊断肌肉减少症。肌肉减少症的阶段进一步分类为前麻痹(单独的肌肉质量低),肌肉减少症(低肌肉质量和低肌肉力量或表现低)和严重的肌肉减少症(低肌肉质量,低肌肉力量,低肌肉力量和低身体表现)。然而,由于肌肉减少症的复杂病理生理学涉及多种相关途径和有限的理解,目前缺乏临床治疗中的单一有效靶向治疗药物。
更广泛的背景地球的锂储量既有限制和分布不均,在满足全球电气化驱动的不断增长的需求方面提出了重大挑战。鉴于锂离子电池(LIB)的局限性,探索替代电池技术已经变得至关重要。钠离子电池(SIBS)代表了一种有希望的替代方案,由于丰富的钠资源及其低成本而引起了对储能系统和低速电动汽车应用的关注。含钠的过渡金属分层氧化物,普鲁士蓝色类似物和聚苯二醇化合物是SIBS的阴极材料的主要类别。中,具有稳健且稳定的P – O共价键具有固有的安全性,高氧化还原电位以及化学和热稳定性,具有稳定和稳定的Polyanion型阴极。然而,[PO 4]的重3D框架和绝缘特性导致容量递送有限(O 110 mA H G 1),低电子电导率和缓慢的反应动力学,这不可避免地导致电化学性能差。结果,具有高容量,循环寿命和快速反应动力学的高级阴极材料的发展具有重要意义,但它仍然是一个巨大的挑战。在这里,设计和优化了嵌入多孔碳框架中的集成聚苯式氧化物阴极,以增强Na-ion储存性能,该储存性能远远超过了NA 3 V 2(PO 4)3(PO 4)3(PO 4)3和出色的快速充电能力的理论能力,并在半层和AH级别的袋中的较长的循环寿命以及较长的循环寿命。此外,我们通过结合先进的表征技术和理论计算,例如原位X射线衍射,球形像差校正的透射电子显微镜技术,X射线吸收接近边缘结构,密度的功能理论理论计算,和comsol ysol ysimssics yourculation columpulations offeculation和comsol ysimiss,我们 揭示了这种集成阴极的自发激活和传输机制。 这项工作表明,集成阴极中的协同作用可以推动高级阴极材料的开发,以进行高能密度,快速充电和长寿命钠离子电池。揭示了这种集成阴极的自发激活和传输机制。 这项工作表明,集成阴极中的协同作用可以推动高级阴极材料的开发,以进行高能密度,快速充电和长寿命钠离子电池。揭示了这种集成阴极的自发激活和传输机制。这项工作表明,集成阴极中的协同作用可以推动高级阴极材料的开发,以进行高能密度,快速充电和长寿命钠离子电池。