摘要:(1)背景:目前使用的大多数设备都使用射频辐射,因此,对人体暴露于射频辐射的评估已成为一个备受关注的问题。即使在军事领域广泛使用射频设备,仍然缺乏对军事场景中人体电磁场暴露评估的清晰认识。(2)方法:对关于评估军事人员暴露于特定于军事环境的射频的科学文献进行了回顾。(3)结果:对科学文献进行了回顾,根据军事人员可能接触的军事设备的类型进行分组。根据军事设备的目的用途,它们分为四大类:通信设备、定位/监视设备、干扰器和电磁定向能武器。 (4) 讨论与结论:审查表明,在本文评估的暴露条件下,仅偶尔出现过度暴露的情况,而在大多数情况下,暴露量低于工人暴露限值。然而,由于研究数量有限,并且缺乏对某些设备的暴露评估研究,我们无法得出明确的结论,并鼓励对军事暴露评估进行进一步研究。
摘要 - 我们目睹了向机动性的新时代的过渡,该时代普遍连接(半)自动驾驶汽车将显着提高安全性,交通效率和旅行经验。通过在新兴的第六代(6G)无线网络上构建一组高级车辆用例,例如排队,远程驾驶和完全自动驾驶。在许多颠覆性6G无线技术中,本文的主要目标是介绍可见光光通信(VLC)和基于射频的射频(RF)的混合整合的潜在益处。我们研究了干扰以及各种气象现象的影响。雨,雾和干雪,在拟议的链接聚集(LA)辅助杂种RF-VLC V2X系统上。模拟结果表明,我们提出的LA辅助混合RF-VLC V2X系统具有实现高度可靠性(估计约为99.999%)和低潜伏期(可能小于1 ms)的潜力,即使在受干扰和不利的气氛影响的情况下,也可能在200 m内。为了刺激混合RF-VLC V2X地区的未来研究,我们还强调了潜在的挑战和研究方向。
由金属芯和分子J凝聚糖物的有机壳组成的混合芯 - 壳纳米结构的光学特性取决于在壳中金属核心和Frenkel Expitons表面的等离子之间的电磁偶联。在具有强和超强等离子体的情况下 - 激子耦合,使用传统的各向同性经典振荡器模型来描述J种类介绍功能可能会导致理论预测与杂交NanAnoparticles的可用实验光谱之间的巨大差异。我们表明,这些差异不是由经典振荡器模型本身的局限性引起的,而是将有机壳视为光学各向同性材料。通过假设壳体中分子J-聚集的经典振荡器的切向取向,我们与TDBC涂覆的金纳米棒的实验灭绝光谱获得了极好的一致性,而这些射频的实验灭绝光谱无法用常规的各向同性壳模型来处理。我们的结果扩展了对金属(有机纳米颗粒的光学)物理效应的理解,并提出了这种混合系统理论描述的方法。
军用雷达罩性能和验证测试 Thomas B. Darling 客户支持副总裁 MI Technologies 系统设计师付出了令人难以置信的努力,为我们的军队生产最先进的雷达和其他基于射频的功能。现代雷达系统用于各种目的,包括但不限于:天气评估;导航;地形跟踪/地形规避;武器火力控制;电子战;敌人跟踪、监听和识别等。这些雷达系统依赖于极高的测量精度、可重复性和准确性,都需要防风雨保护。虽然许多人会想到这些复杂的雷达系统产生的奇特硬件和性感的屏幕截图,但大多数人不会想到这些系统的一个极其关键的组件:雷达罩或雷达罩。当人们考虑到这些系统对我们的军队正常运行的迫切需要以及冲突期间的恶劣条件时,这个组件保护着重要的系统,这可能是生存和灾难之间的区别。最知名的雷达罩是位于飞机或导弹机头上的雷达罩。然而,许多军事应用和新的商业应用正在将微波系统定位在飞机的其他位置。这些系统通常需要奇怪的形状来保护射频系统并具有足够的空气动力学性能。军用天线罩测试毫无疑问相当
聚合物基质中纳入的铅卤化物钙钛矿纳米晶体(LHP-NC)已成为各种光子应用的有前途的材料。然而,由于单体转化率低,LHP-NCS负载限制以及在连接后保持NCS完整性方面,挑战持续到实现高质量的纳米复合材料,并限制了NCS完整性。通过NC引发的光诱导的电子传递 - 可逆的加法链转移(PET-RAFT)方法合成单个步骤中合成LHP-NCS/聚(甲基丙烯酸甲酯)纳米复合材料的新颖方案。poly-Merization启动由NCS表面介导的蓝光下介导的均可制造具有NCS载荷的同质纳米复合材料,即使在氧气的情况下,NCS载荷也可达高达7%w/w和≈90%的单体转换。此过程保留了NCS的光学质量并钝化了NCS表面缺陷,从而导致纳米复合材料表现出接近统一发光效果。通过放射性发光测量值表明,这种方法对产生高负载的纳米复合材料进行辐射检测的潜力验证了6000 pH MeV-1的光屈服值和效率寿命为490 PS的快速闪烁动态,显示了时间射频射频的前景。
摘要:自动无人驾驶飞机(UAV)在各个领域都有几个优点,包括救灾,航空摄影和摄影,地图和测量,农业以及国防和公共用途。但是,越来越多的可能性可能会滥用无人机,以违反无授权的机场和发电厂等重要地点,从而危害公共安全。因此,至关重要的是,准确而迅速识别不同类型的无人机以防止其滥用并防止未经授权的访问引起的安全问题。近年来,机器学习(ML)算法在自动解决上述问题并在广泛范围内对无人机进行准确的检测和分类方面表现出了希望。这项技术对于无人机系统来说是非常有希望的。在本调查中,我们描述了基于ML和深度学习(DL)算法的各种UAV检测和分类技术的最新使用。在此调查中考虑了基于ML的四种类型的无人机检测和分类技术:基于射频的无人机检测,视觉数据(图像/视频)基于无人机检测,基于声学/基于声音/声音的无人机检测以及基于雷达的无人机检测。此外,该调查报告还使用ML探索了基于ML的混合传感器和增强学习的无人机检测和分类。此外,我们考虑了基于ML的无人机检测的方法,解决方案以及可能的未来研究方向。此外,还广泛探索了无人机检测和分类技术的数据集信息。这项研究具有用于当前无人机检测和分类研究的研究,特别是对于基于ML-和DL的无人机检测方法。
自从卫星首次进入太空以来,地球观测 (EO) 一直是卫星的一项关键任务。为了支持太空应用,EO 卫星拍摄照片的时间和空间分辨率一直在提高,但这也增加了每颗卫星生成的数据量。我们观察到,未来的 EO 卫星将生成大量数据,由于太空和地球之间的通信容量有限,这些数据无法传输到地球。我们表明,传统的数据缩减技术如压缩 [130] 和早期丢弃 [54] 并不能解决这个问题,直接增强当今基于射频的天地通信基础设施 [136, 153] 也不能解决这个问题。我们探索了一种非传统的解决方案 —— 将原本在地面进行的计算转移到太空。这减轻了将数据传输到地球的需要。我们分析了十种非纵向 RGB 和高光谱图像处理地球观测应用的计算和功率要求,发现这些要求无法由当今主导 EO 任务的小型卫星满足。我们支持空间微数据中心 - 大型计算卫星,其主要任务是支持 EO 数据的空间计算。我们表明,一个 4KW 空间微数据中心可以支持大多数应用程序的计算需求,尤其是与早期丢弃结合使用时。然而,我们确实发现 EO 卫星和空间微数据中心之间的通信成为一个瓶颈。我们提出了三种空间微数据中心通信协同设计策略 - 基于 𝑘 − 𝑙𝑖𝑠𝑡 的网络拓扑、微数据中心拆分和将空间微数据中心移至地球静止轨道 - 这些策略可以缓解瓶颈并实现有效利用空间微数据中心。
用于空间领域感知 (SDA) 的无源射频 (PRF) 技术已被美国太空军 (USSF) 空间条令“出版物 3-100,空间领域感知” [1] 确定为 SDA 任务感兴趣的一项技术。无源射频传感器利用航天器发射的信号来确定飞行器的位置和运动,进而可用于轨道确定和保管维护。无源射频技术还包括使用传统信号处理和射频机器学习 (RFML) 技术分析信号外部特性,以表征航天器,包括识别、姿势估计、生命模式、变化或事件检测、意图估计、预警以及包括雷达和光学传感器在内的其他传感器系统的倾斜和排队。无源射频的主要优点包括白天和夜间的持续观测、恶劣天气下的观测以及快速重访。这项工作将涵盖弗吉尼亚理工大学国家安全研究所利用弗吉尼亚理工大学地面站 (VTGS) 的资产和相对低成本的商用现货 (COTS) 软件定义无线电 (SDR) 技术开发初步概念验证无源射频能力的努力。该系统的当前目标包括在 S 波段卫星通信频率分配下跟踪地球同步航天器、通过卫星下行链路的极化分析探索姿态估计,以及初始数据收集以探索用于跟踪和卫星特性的多种算法。正在为这一初步概念验证研究的特定无源射频技术是射频干涉测量法,它利用多个相干卫星接收器系统之间的长间隔(称为基线),并为跟踪观测提供潜在的亚角秒角分辨率。将介绍真实世界干涉仪的技术设计,包括实施挑战,例如多个站点之间的定时和同步以及系统校准。还将介绍该系统从空中真实世界测量中得出的初步结果,涉及卫星跟踪和特性。本文最后将讨论系统的改进和未来工作,包括在替代飞行状态下的跟踪和特性描述、扩大系统的频率覆盖范围及其对系统设计的影响,以及可用于 SDA 任务并通过系统测试的潜在信号处理和 RFML 技术。
军用雷达罩性能和验证测试 Thomas B. Darling 客户支持副总裁 MI Technologies 系统设计师付出了令人难以置信的努力,为我们的军队生产最先进的雷达和其他基于射频的功能。现代雷达系统用于各种目的,包括但不限于:天气评估;导航;地形跟踪/地形规避;武器火力控制;电子战;敌人跟踪、监听和识别等。这些雷达系统依赖于极高的测量精度、可重复性和准确性,都需要防风雨保护。虽然许多人会想到这些复杂的雷达系统产生的奇特硬件和性感的屏幕截图,但大多数人不会想到这些系统的一个极其关键的组件:雷达罩或雷达罩。当人们考虑到这些系统对我们的军队正常运行的迫切需要以及冲突期间的恶劣条件时,这个组件保护着重要的系统,这可能是生存和灾难之间的区别。最知名的雷达罩是位于飞机或导弹机头的雷达罩。然而,许多军事应用和新的商业应用正在将微波系统定位在飞机的其他位置。这些通常需要奇怪的形状来保护射频系统并具有足够的空气动力学性能。军用天线罩测试自然比商业应用复杂得多。典型测量参数用于表征天线罩性能的一些典型测量参数包括:传输效率 (TE) 传输效率是通过天线罩的微波能量的百分比,通常在不同角度区域测量(通常代表雷达系统实际使用的天线罩面积)。它是通过比较两种不同条件下测试天线接收的功率水平来测量的。在天线罩关闭的情况下进行参考测量,然后在雷达天线上安装天线罩后再次进行测量。将得到的数据绘制在天线罩的表面上。虽然理想情况下是“透明的”,但所有天线罩在射频信号通过时都会由于反射、衍射、吸收、折射和去极化等因素而产生损耗。波束偏转 (BD)/ 瞄准线偏移 (BS) 波束偏转是指微波信号通过天线罩时传播方向的变化。如果考虑与跟踪快速移动的敌方目标或低空飞行、快速移动的飞机的地形规避相关的几何形状,那么由天线罩引入的即使非常小的角度误差也会产生重大影响。(对于具有跟踪零点的测试天线,瞄准线偏移这一术语通常与波束偏转互换使用。因此,波束偏转可以作为用于总波束情况的术语。) 反射率 反射率是雷达天线端口反射系数幅度的变化,这是由于天线罩的存在而引起的。这是使用带有远程头的反射计测量的。反射系数是在天线罩安装前后测量的,此时天线指向无反射环境(例如消声室或室外靶场)。理想情况下,此测量与雷达天线的指向方向无关。