我们可以理解,有许多因素影响该决定,包括Geo vlay客户投资组合和IT团队,分布式的应用程序堆栈,混合服务的可重复使用性,以逐步采用遗产中多个应用程序的云云采用。在多云体系结构中,三种最常用的模式,可以影响以下三个最常见的多云解决方案:最常见的三个模式:面向数据的多云体系结构 - 这是一个异构模式,企业根据数据源的适用性选择多云。For example, if the application estate has Oracle, Postgre, MySQL, MSSQL and customer prefers not to do actual DB transformation (Oracle to MSSQL or MSSQL to Postgre), then we can choose applications with Oracle, Postgre, MySQL to go to AWS (where Oracle to PSQL is quite easy in AWS/Azure) and MSSQL based apps can go to Azure.对于应用NOSQL数据库平台的应用程序(批次,实时分析)非常适合移动到任何CSP(例如:MongoDB,Hadoop群集),并且仅比较成本比较(对于选定的区域(S),Zone(s),Zone(s)的多云采用。面向服务的多云体系结构 - 这是一种均匀模式,企业基于服务,包括服务,API层和处理逻辑(功能)在内的多云,其中也可能使用CSP跨CSP和集中服务的多云服务可用性。例如,可以根据服务使用和需求将多glot微服务组迁移到AWS,Azure,GCP(例如:Apigee服务可以转到GCP,使用Fabric的服务编排可以转到Azure,并且Hub Service Service Service Services可以获取AWS)。
Cheraghian 等人 [ 21 – 23 ] 在零样本 3 维模型分类方 面提出了 3 维点云的零样本学习方法、缓解 3 维零样 本学习中枢纽点问题的方法和基于直推式零样本学 习的 3 维点云分类方法,并将它们封装进一个全新 的零样本 3 维点云方法 [ 24 ] 中。以上方法均是利用已 知类样本的点云表征及其词向量对未知类别进行分 类,开创了零样本 3 维模型分类方法。近年来, CLIP 在零样本图像分类上取得了良好的效果,因此有研 究者将 CLIP 应用到零样本 3 维模型分类方法中, Zhang 等人 [ 25 ] 提出了基于 CLIP 的 3 维点云理解 (Point cloud understanding by CLIP, PointCLIP) 模型, PointCLIP 首先将 3 维点云投影成多个深度图,然 后利用 CLIP 的预训练图像编码器提取深度图特 征,同时将类别名称通过 CLIP 预先训练的文本编 码器提取文本特征。但是 PointCLIP 的性能受到深 度图和图像之间的域差异以及深度分布的多样性限 制。为了解决这一问题,基于图像 - 深度图预训练 CLIP 的点云分类方法 (transfer CLIP to Point cloud classification with image-depth pre-training, CLIP2Point) [ 26 ] 将跨模态学习与模态内学习相结合 训练了一个深度图编码器。在分类时,冻结 CLIP 的图像编码器,使用深度图编码器提取深度图特 征,该方法缓解了深度图和图像间的模型差异。用 于 3 维理解的图像 - 文本 - 点云一致性表征学习方法 (learning Unified representation of Language, Im- age and Point cloud for 3D understanding, ULIP) [ 27 ] 构建了一个图像、文本和点云 3 种模态的 统一嵌入空间,该方法利用大规模图像 - 文本对预 训练的视觉语言模型,并将 3 维点云编码器的特征 空间与预先对齐的视觉 - 文本特征空间对齐,大幅 提高了 3 维模型的识别能力。与之相似的是,基于 提示文本微调的 3 维识别方法 (CLIP Goes 3D, CG3D) [ 28 ] 同样使用 3 元组形式确保同一类别的 3 维模 型特征和图像特征之间以及 3 维模型特征和文本特 征之间存在相似性,从而使点云编码器获得零样本 识别的能力。另外, PointCLIP V2 [ 29 ] 在 Point- CLIP 的基础之上,通过利用更先进的投影算法和 更详细的 3 维模型描述,显着提高了零样本 3 维模型 分类准确率。本文采用语义增强 CLIP 解决图像和文 本的语义鸿沟问题,通过在语义层面为图像和文本 提供更多相似的语义信息,使图像和文本对齐更具有 一致性,从而有效提高 3 维模型的零样本分类性能。 2.2 提示工程
摘要:云计算已成为现代IT基础架构的重要组成部分,为组织提供了可扩展且灵活的解决方案。安全问题仍然是其广泛采用的重大障碍。本研究探讨了Oracle云基础架构(OCI)的关键安全挑战,包括数据泄露,未经授权的访问,身份管理和网络漏洞。虽然Oracle的安全工具(例如Oracle Cloud Guard和Data安全)有助于减轻这些风险,而不断发展的网络威胁需要持续适应。共同的责任模型进一步需要采取主动的安全措施和法规依从性。为了提高云安全性,这项研究研究了混合加密技术的性能,比较了OCI中基于RSA,Blowfish,基于池塘的关键管理。结果表明,RSA + Blowfish模型可显着提高加密速度,降低解密延迟并增强安全指标。绩效评估指标以准确性(99.47%),精度(99.12%),召回(99.08%)和F1得分(99.10%)确认其鲁棒性。这些发现建立了混合加密作为确保基于云的数据的有前途的方法。
关于 Zscaler Zscaler (NASDAQ: ZS) 加速数字化转型,使客户能够更加敏捷、高效、有弹性和更安全。Zscaler Zero Trust Exchange 通过安全地连接任何位置的用户、设备和应用程序,保护数千名客户免受网络攻击和数据丢失。基于 SASE 的 Zero Trust Exchange 分布在全球 150 多个数据中心,是世界上最大的内联云安全平台。了解更多信息请访问 zscaler.com 或在 Twitter 上关注我们 @zscaler 。
• 支持服务 • Google Cloud Armor • Google Cloud Logging • Google Cloud Monitoring • Google Cloud Identity & Access Management • Google Data Loss Prevention API • Google Cloud Security Command Center • Google Forseti* • Google Cloud IDS* • Google Virtual Private Cloud • 第三方防火墙 • Google Cloud Router • Google Cloud Interconnect (BCAP) • VPC/防火墙流日志 • Google Cloud KMS • Identity Platform (GD) • Google Cloud Trace • Google Cloud Load Balancing • Google Cloud Storage
本文件中的“德勤”是指德勤咨询有限责任公司,是德勤有限责任公司的子公司。有关我们法律结构的详细描述,请参阅 http://www.deloitte.com/us/about。根据公共会计规则和规定,某些服务可能无法提供给鉴证客户。本出版物仅包含一般信息,德勤不会通过本出版物提供会计、业务、财务、投资、法律、税务或其他专业建议或服务。本出版物不能替代此类专业建议或服务,也不应将其用作可能影响您业务的任何决定或行动的依据。在做出任何可能影响您业务的决定或采取任何可能影响您业务的行动之前,您应咨询合格的专业顾问。德勤对任何依赖本出版物而遭受的损失概不负责。
•BTP ABAP:在不同SAP BTP ABAP环境实例之间对ABAP对象的引用。参考可以由软件组件,提交ID,分支名称和标签名称的名称组成。导入类型BTP ABAP的引用时,将GIT存储库的引用内容拉到目标实例。•在不同的云子帐户和通常的租户之间以应用程序特定格式运输的应用程序内容,应用程序内容包装在存档文件中,例如.zip文件或.rar文件。档案中可以包含任何特定于应用程序的内容。创建此类存档文件的应用程序必须提供一种将特定于应用程序特定内容部署到目标环境中的方法。这意味着,只有在目标环境中的特定于应用程序的部署服务能够处理它的情况下,才能将这种存档文件用于运输。有关更多信息,请参见单个应用程序的文档。•SAP HANA XS经典模型的交付单元(DU)在不同的SAP HANA实例之间分配给云子计数