4。印度政府一直与不丹皇家政府在太空合作领域紧密合作。2019年8月17日,印度总理Shri Narendra Modi和不丹总理Lotay Tshering博士共同为Thimphu的南亚卫星(SAS)的地面地球站共同揭幕,该站是由ISRO支持的。SAS是由印度于2017年推出的,作为不丹在内的南亚地区的礼物。认识到SAS对不丹在沟通和灾难管理等领域的社会经济发展所产生的积极影响,莫迪总理曾根据不丹的要求,在不丹的要求上提供了更大的带宽,作为向不丹人民提供的礼物。
摘要:S-Step(小型合成孔径雷达(SAR)技术实验项目(S-Step))任务的主要目标是开发80公斤级的活动X波段SAR观察小卫星。对于S-Step系统的更轻,更小,更好,更便宜的开发,新的热设计策略至关重要。因此,我们在这项研究中提出了一种新的热设计策略。提议的热设计的主要特征涉及通过优化卫星上的环境热量量,在右和左外观模式下提供长期SAR成像持续时间,以及使用轻巧的石墨板作为某些高电量仪器的热量界面。这些功能通过加热器功率最小化并实现S-Step的轨道系统性能来最大程度地减少卫星的质量预算。通过对S-步骤系统的轨热分析,通过数值验证了所提出的热设计的有效性。此外,通过空间模拟的热真空测试对钥匙有效负载组件和多功能发送/接收模块结构的热设计进行了验证。
NASA的Cubesat发射计划(CSLI)为小卫星有效载荷提供了发射机会。 这些立方体作为先前计划的任务或风险投资班发射器的主要有效载荷作为辅助有效载荷飞行。 立方体是一类称为纳米卫星的研究航天器。 要参加CSLI计划,Cubesat调查应与NASA的战略计划和教育战略协调框架一致。 该研究必须解决科学,探索,技术发展,教育或运营的各个方面。NASA的Cubesat发射计划(CSLI)为小卫星有效载荷提供了发射机会。这些立方体作为先前计划的任务或风险投资班发射器的主要有效载荷作为辅助有效载荷飞行。立方体是一类称为纳米卫星的研究航天器。要参加CSLI计划,Cubesat调查应与NASA的战略计划和教育战略协调框架一致。该研究必须解决科学,探索,技术发展,教育或运营的各个方面。
2016-2019航天系统设计实验室主任,2016年至2016年至2016年至2019年,2016年8月至今的教职员工顾问,朗布林火箭俱乐部,2018年8月至2018年8月至今的教师顾问,2018年8月的教师顾问,2018年8月9日,空间勘探和开发(Space Neveries),2017年8月(SATES),2017年8月的学生,2017年8月(SATES),2017年8月,2018年8月至中心(SATES),2018年8月,PRAMBLIN ROCKET俱乐部,2016年8月,2016年8月至今选定的专利和发明披露没有选定的出版物:2015年至今1。 Eldad,O。,Lightsey,E。G.,“非平面太阳帆的无螺旋桨态度控制”,AIAA指导,控制和动力学杂志,第1卷。 38,编号 8,2015年8月,第1页。 1531-1534。 2。 Johl,S.,Lightsey,E。G.,“大学Cubesat Missions的可重复使用的命令和数据处理系统”,《小卫星》,第1卷。 4,编号 2,2015年10月,pp。 357-369。 3。 Stevenson,T.,Imken,T.,Lightsey,E。G.,“为行星际立方体任务的冷气油推进器的设计和测试,”《小卫星杂志》,第1卷。 4,编号 2,2015年10月,pp。 5371-386。 4。 McBryde,C。R.,Lightsey,E。G.,“对小卫星的双重使用成像传感器的端到端测试”,《小卫星》,第1卷。 5,编号 1,2016年2月,第1页。 435-448。 5。 Kjellberg,H。C.,Lightsey,E。G.,“离散的四季节约束态度探路”,AIAA指导,控制和动力学杂志,第1卷。 39,编号 3,2016年3月,pp。 713-718。 6。 53,编号 7。2016-2019航天系统设计实验室主任,2016年至2016年至2016年至2019年,2016年8月至今的教职员工顾问,朗布林火箭俱乐部,2018年8月至2018年8月至今的教师顾问,2018年8月的教师顾问,2018年8月9日,空间勘探和开发(Space Neveries),2017年8月(SATES),2017年8月的学生,2017年8月(SATES),2017年8月,2018年8月至中心(SATES),2018年8月,PRAMBLIN ROCKET俱乐部,2016年8月,2016年8月至今选定的专利和发明披露没有选定的出版物:2015年至今1。Eldad,O。,Lightsey,E。G.,“非平面太阳帆的无螺旋桨态度控制”,AIAA指导,控制和动力学杂志,第1卷。38,编号8,2015年8月,第1页。1531-1534。2。Johl,S.,Lightsey,E。G.,“大学Cubesat Missions的可重复使用的命令和数据处理系统”,《小卫星》,第1卷。 4,编号 2,2015年10月,pp。 357-369。 3。 Stevenson,T.,Imken,T.,Lightsey,E。G.,“为行星际立方体任务的冷气油推进器的设计和测试,”《小卫星杂志》,第1卷。 4,编号 2,2015年10月,pp。 5371-386。 4。 McBryde,C。R.,Lightsey,E。G.,“对小卫星的双重使用成像传感器的端到端测试”,《小卫星》,第1卷。 5,编号 1,2016年2月,第1页。 435-448。 5。 Kjellberg,H。C.,Lightsey,E。G.,“离散的四季节约束态度探路”,AIAA指导,控制和动力学杂志,第1卷。 39,编号 3,2016年3月,pp。 713-718。 6。 53,编号 7。Johl,S.,Lightsey,E。G.,“大学Cubesat Missions的可重复使用的命令和数据处理系统”,《小卫星》,第1卷。4,编号2,2015年10月,pp。357-369。3。Stevenson,T.,Imken,T.,Lightsey,E。G.,“为行星际立方体任务的冷气油推进器的设计和测试,”《小卫星杂志》,第1卷。4,编号2,2015年10月,pp。5371-386。4。McBryde,C。R.,Lightsey,E。G.,“对小卫星的双重使用成像传感器的端到端测试”,《小卫星》,第1卷。5,编号1,2016年2月,第1页。435-448。5。Kjellberg,H。C.,Lightsey,E。G.,“离散的四季节约束态度探路”,AIAA指导,控制和动力学杂志,第1卷。39,编号3,2016年3月,pp。713-718。6。53,编号7。Gamble,K.,Lightsey,E。G.,“小型卫星风险管理的决策顾问工具”,AIAA《航天器和火箭杂志》,第1卷。3,2016年5月,pp。420-432。Tam,M.,Lightsey,E。G.,“使用混合整数凸面编程的约束航天器的重新定位”,Acta Astronautica,第1卷。127,2016年10月,pp。31-40。8。Eldad,O.,Lightsey,E。G.,Claudel,C。C.,“具有模型不确定性的可变形太阳能帆的最低时间态度控制”,AIAA航天器和火箭杂志,第1卷。54,编号4,2017年7月,pp。863-870。9。Lightsey,E。G.,Stevenson,T.,Sorgenfrei,M。,“为星际内立方体的3-D打印冷气油推进器的开发和测试,” IEEE的会议记录,第1卷。106,编号3,2018年3月,pp。379-390。10。Stevenson,T.,Lightsey,E。G.,“检查员Cubesat的多功能3D打印结构的设计和优化”,Acta Astronautica,第1卷。170,pp。331-341。出版物,2015年至今:27职业出版物:141
Haris Riris 1,James B. Abshire 1,Michael Mumma 1,Geromino Villanueva 1,Thomas Hanisco 1,1 Grogdard太空飞行中心,8800 Greenebelt Rd。 简介:我们描述了一种效率和敏感方式来绘制行星气氛中痕量气体丰度的方法。 该方法使用一对在圆形极性轨道形成中飞行的小卫星。 每个卫星都带有几个可调的单频率二极管激光器和一个灵敏的光学检测器。 每个卫星的激光束都通过行星气氛的肢体指向,以照亮另一个卫星。 通过痕量吸收线调整二极管激光的波长,可以在另一个卫星接收器处测量的路径中的气体刺激。Haris Riris 1,James B. Abshire 1,Michael Mumma 1,Geromino Villanueva 1,Thomas Hanisco 1,1 Grogdard太空飞行中心,8800 Greenebelt Rd。简介:我们描述了一种效率和敏感方式来绘制行星气氛中痕量气体丰度的方法。该方法使用一对在圆形极性轨道形成中飞行的小卫星。每个卫星都带有几个可调的单频率二极管激光器和一个灵敏的光学检测器。每个卫星的激光束都通过行星气氛的肢体指向,以照亮另一个卫星。通过痕量吸收线调整二极管激光的波长,可以在另一个卫星接收器处测量的路径中的气体刺激。
在竞争激烈的新太空行业中,独创性,可靠性和成本效益是最高因素。当Latitude开始创建其尖端的小卫星发射器Zephyr时,他们认识到选择正确的编程语言和开发工具的重要性来支持他们的努力。评估了许多候选者后,纬度定居在ADA及其正式可验证的Spark子集上。ada和Spark被认为对声音软件工程实践有最佳的支持,从而降低了生命周期成本,同时满足实时嵌入式系统性能和可预测性要求。根据他们的成功经验,Latitude计划扩大对ADA和SPARK在未来项目上的使用,并将这些技术视为关键推动者。
Gilmour Space是一家由风险投资的澳大利亚火箭公司,开发了将小卫星推向太空的新功能,并与包括美国国家航空航天局(“ NASA”),澳大利亚航天局和昆士兰州国防科学技术等领先组织达成了协议。由两个兄弟于2013年创立,这家总部位于昆士兰州的初创企业已成长为澳大利亚领先的太空公司之一,开创了新的和创新的混合动力推进技术,目的是为较低的成本访问空间提供。作为该领域的领导者,2018年2月,吉尔穆尔(Gilmour Space)与美国NASA达成了太空法案协议,与各种研究,技术发展和教育计划合作。2019年12月,吉尔穆尔(Gilmour Space)还与澳大利亚航天局(Australian Paces Agency)签署了一份战略意图和合作声明,表明了他们致力于将澳大利亚推向太空的承诺。
与瑞典接任欧盟总统职位,1月13日,在基鲁纳(Kiruna)的Esrange太空中心开设了新的发射设施就职典礼,参加了I.A.由瑞典国家元首,埃克拉·乌尔苏拉·冯·德莱恩(Ec Ursula von der Leyen)总裁卡尔·十六世·古斯塔夫(King Carl XVI Gustaf)和ESA DG Josef Aschbacher。Esrange是第一个欧洲太空港,可为欧洲土壤中的小卫星发射垂直轨道。自1966年以来,Esrange主持了轨道下发出的火箭和高空气球的发射。现在,可以从Esrange发射小型卫星到Leo的Polar Orbits。此外,新设施可以测试可重复使用的火箭。Arianegroup将对其Themis可重复使用的助推器进行初步测试。此外,ISAR航空航天已经过去了,将继续在Esrange进行微型推出器进行测试。