摘要。我们介绍了Sqisignhd,这是一种灵感来自SQISIGN的新的Quantum Digital Signature Sneps。sqisignhd利用了对SIDH攻击的最新态度突破,这允许有效地表示任意程度的同基因作为较高尺寸同等基因的组成部分。sqisignhd克服了sqisign的主要缺点。首先,它可以很好地扩展到高安全级别,因为Sqisignhd的公共参数很容易生成:基础字段的特征仅是表2 f 3 f'-1。第二,签名过程更简单,更有效。我们在28毫秒内采用C运行中实施的签名程序,与Sqisign相比,这是一个显着改善。第三,该方案更容易分析,从而降低了更具吸引力的安全性。最后,签名大小比(已经有纪录的)SQISIGN更紧凑,签名的签名小至109个字节,对于后Quantum NIST-1的安全性水平。这些优点可能是以验证为代价的,验证现在需要在维度4中计算一个同等基因,该任务的优化成本仍然不确定,因为这是很少关注的重点。我们对验证的实验性SAGEMATH实施在600毫秒左右运行,表明优化和低级实施后,维度4 iSEGEN的潜在Craplaphic ofgraphic兴趣。
• BS EN 60839-compliant • 9A maximum output • 1A constant current battery charging • 9 switched 1A outputs protected by PTC resettable fuses with fuse monitoring • Outputs can be connected in parallel for higher current loads • Individual output switching selected by jumper link • Outputs can be divided into two separate switched groups and an ‘always-on' group • Group switching by applying a positive voltage to three control inputs • Group 1 and group 2 can be switched individually with an ‘all groups switched-off' override • All outputs protected from inductive load transients • Current limited 1A constant current battery charging • Fully protected battery charging circuit • Battery health impedance testing and reporting • Battery presence detection • PSU operation and status monitoring • Over-voltage shutdown protection • Individual PSU fault, Battery fault and AC power fault outputs • On board 16-LED status display • External LED \ OK indicator Battery充电输出电池充电电路提供了1A恒电流输出,旨在在24小时内充电24AH或较小至80%的电池。输出是短路,超载和反向极性连接的。PSU确定指示器和交流故障继电器
使用金属粉末原料的基于激光的直接能量沉积 (DED) 系统被认为是一种有前途的制造方法,因为它们能够缩短生产周期并制造复杂的零件几何形状。通过在同轴注入材料并使其凝固的同时用高功率激光束产生熔池来构建组件。大规模使用 DED 的障碍在于粉末收集效率差,在这种情况下,一部分注入的粉末会逸出熔池,导致打印材料质量与供应原料质量之比下降。已经观察到混合制造机床内 DED 系统上同轴喷嘴的磨损状态会随着时间的推移降低收集效率。本研究通过将流动可视化技术应用于现场过程监控格式、实施计算流体动力学 (CFD) 模拟和沉积测试来调查这种影响。识别和分类由于磨损而导致的喷嘴几何缺陷,并通过多种计算方法证明喷嘴尖端磨损(导致轴向尖端减少)对粉末收集效率的影响。发现集料效率与粉末流直径之间存在线性相关性,导致喷嘴尖端逐渐减小至 -1 毫米时效率损失 15-20%。这些结果为进一步研究粉末进料 DED 系统的磨损效应和零缺陷制造解决方案奠定了基础。
摘要:研制了一种基于硅芯片的双层三维螺线管电磁动能收集器,可高效将低频(<100 Hz)振动能转化为电能。利用晶圆级微机电系统 (MEMS) 制造形成金属铸造模具,然后采用随后的铸造技术将熔融的 ZnAl 合金快速(几分钟内)填充到预先微加工的硅模中,在硅片中制作 300 匝螺线管线圈(内螺线管或外螺线管均为 150 匝),以便锯切成芯片。将圆柱形永磁体插入预蚀刻的通道中,以便在外部振动时滑动,该通道被螺线管包围。收集器芯片的尺寸小至 10.58 mm × 2.06 mm × 2.55 mm。螺线管的内阻约为 17.9 Ω。测得的最大峰峰值电压和平均功率输出分别为 120.4 mV 和 43.7 µ W 。电磁能量收集器的功率密度有很大的提高,为 786 µ W/cm 3 ,归一化功率密度为 98.3 µ W/cm 3 /g 。实验验证了电磁能量收集器能够通过步行、跑步和跳跃等各种人体运动来发电。晶圆级制造的芯片式螺线管电磁收集器在性能均匀、尺寸小和体积大的应用方面具有优势。
摘要:高纵横比聚合物材料广泛应用于从服装等日常材料到工业和医疗领域的专用设备等各种应用领域。传统的制造方法,如挤压和模塑,在整合各种材料和实现复杂几何形状方面面临挑战。此外,这些方法在提供低成本和快速原型设计方面的能力有限,而这对于研发过程至关重要。在这项工作中,我们研究了使用市售的 3D 打印机来制造纤维预制件,然后将其热拉成纤维。通过优化 3D 打印参数,我们成功制造了直径小至 200 µm 且形状复杂、特征精确到几微米的纤维。我们通过从各种材料中制造纤维(例如具有不同刚度的纤维和具有磁性的纤维)证明了这种方法的多功能性,这有利于开发肌腱驱动和磁驱动的机器人纤维。此外,通过设计新颖的预制件几何形状,我们生产了锥形纤维和具有互锁机制的纤维,也适用于医疗可控导管应用。这些进步凸显了这种方法的可扩展性和多功能性,为生产用于各种应用的高精度聚合物纤维提供了一个强大的平台。关键词:增材制造;3D 打印;预制件制造;热拉伸;多材料纤维;功能纤维;纤维致动器
摘要。我们介绍了Sqisignhd,这是一种灵感来自SQISIGN的新的Quantum Digital Signature Sneps。sqisignhd利用了对SIDH攻击的最新态度突破,这允许有效地表示任意程度的同基因作为较高尺寸同等基因的组成部分。sqisignhd克服了sqisign的主要缺点。首先,它可以很好地扩展到高安全级别,因为Sqisignhd的公共参数很容易生成:基础字段的特征仅是表2 f 3 f'-1。第二,签名过程更简单,更有效。我们在28毫秒内采用C运行中实施的签名程序,与Sqisign相比,这是一个显着改善。第三,该方案更容易分析,从而降低了更具吸引力的安全性。最后,签名大小比(已经有纪录的)SQISIGN更紧凑,签名的签名小至109个字节,对于后Quantum NIST-1的安全性水平。这些优点可能是以验证为代价的,验证现在需要在维度4中计算一个同等基因,该任务的优化成本仍然不确定,因为这是很少关注的重点。我们对验证的实验性SAGEMATH实施在600毫秒左右运行,表明优化和低级实施后,维度4 iSEGEN的潜在Craplaphic ofgraphic兴趣。
图1肝脏中PI3Kγ的细胞类型特异性表达模式,炎症条件下的诱导和功能。(a)PI3Kγ通过人类肝细胞和来自最小至轻度炎性活性的患者的活检中的人类肝细胞和免疫细胞浸润。三角形指向免疫细胞(簇),其中包括一些已知高度表达PI3Kγ的中性粒细胞。在阴性对照中,主抗体被相等的体积缓冲液代替。(b)来自20名男性(雌性(♂)供体池(HEP,DP20)的人类原发性肝细胞中的PI3Kγ表达,但不是非实质细胞(NPC)。来自健康志愿者(LEU)的分离人白细胞作为阳性对照。(c)原代鼠肝细胞和HEPG2细胞在基础条件下表达PI3Kγ; LPS,IFN-γ,IL-1β和TNF-α(CM)刺激后24小时的表达在24小时内增加。(d)WT,PI3KγNULL(左)和肝脏特异性PI3Kγ基因敲除小鼠(PI3KγFloxflox flox flox tg/tg x ailbcre(tg)/tg(tg)/tg,中间,中间)或PII3K抑制剂在AS605240中的PLAN(右图)的planemians sepers septon septin septin septian septhemialsem sepers sepers septhemiane septh粪便悬架。
• 纽约市 5 月份新增 4,600 个私营部门就业岗位,私营就业岗位再创历史新高,比疫情前水平高出 49,800 个。劳动参与率上升 0.2 个百分点,至 62.3%,再创历史新高。失业率稳定在 4.8%,为 2022 年 8 月以来的最低水平。此外,纽约市已将该市失业率与全国失业率之间的差距缩小至疫情前的水平。 • 虽然医疗保健和社会援助行业继续推动就业增长,现在比疫情前增加了 166,100 个工作岗位,但我们注意到金融和保险现在比疫情前增加了 18,000 个工作岗位,而专业、科学和技术服务行业增加了 12,900 个工作岗位。 • 纽约市大都会区 5 月份增加了 17,300 个工作岗位,过去一年增加了 144,400 个工作岗位,领先于全国所有大都会区。自 2022 年初以来,纽约市大都会区新增了 567,200 个工作岗位,超过了达拉斯和迈阿密大都会区的总和。• REBNY 的整体办公室访问指标在 4 月份上升至 75%,为六个月以来的最高水平。优质办公室库存继续跑赢其他市场。REBNY 的 A+ 级办公室访问指标飙升 7 个百分点至 89%,因为 A+ 访问率在 4 月第三周达到 94%。• 5 月份酒店入住率上升至 89.1%,基本恢复到新冠疫情之前的水平。酒店入住率也比一年前增加了 5 个百分点。
摘要 在过去的几十年中,摩尔定律推动半导体行业不断将晶体管的临界尺寸缩小至7纳米。随着晶体管进一步缩小到更小的尺寸,摩尔定律达到了极限,芯片上晶体管密度的增加速度减慢。目前,一些关键步骤已经采用了极紫外光刻技术,它在大批量生产中面临着对准精度和高成本的问题。同时,新材料和3D复杂结构的引入给自上而下的方法带来了严峻的挑战。因此,自下而上的方案被认为是与自上而下工艺相结合的必要方法。本文对原子级沉积方法进行了回顾和分类,以延伸摩尔定律并超越摩尔定律。首先,沉积带来了垂直方向的横向埃级分辨率以及自上而下的刻蚀,例如双重图案化、纳米线的转移、纳米管的沉积等。其次,各种模板辅助的选择性沉积方法,包括介质模板、抑制剂和校正步骤,已经用于3D复杂结构的对准。更高的分辨率可以通过固有的选择性沉积来实现,并讨论了潜在的选择性机制。最后,还讨论了更高精度和效率制造的要求,包括设备、集成过程、放大问题等。本文回顾了低维制造和三维复杂结构的集成,以在半导体领域以及包括但不限于能源、催化、传感器和生物医学的新兴领域中扩展摩尔定律。
定向能量沉积 (DED) 是一种很有前途的增材制造修复技术;然而,DED 易在薄壁部分产生表面波纹(驼峰),这会增加残余应力和裂纹敏感性,并降低疲劳性能。目前,由于缺乏具有高时空分辨率的操作监测方法,DED 中的裂纹形成机制尚不十分清楚。在这里,我们使用在线相干成像 (ICI) 来光学监测表面拓扑并原位检测开裂,结合同步加速器 X 射线成像来观察表面下裂纹的愈合和扩展。ICI 首次实现离轴对准(相对于激光器 24 ◦),从而能够集成到 DED 机器中,而无需更改激光传输光学系统。我们使用单元件 MEMS 扫描仪和定制校准板,实现了 ICI 测量值和激光束位置之间的横向(< 10 µ m)和深度(< 3 µ m)精确配准。 ICI 表面拓扑结构通过相应的射线照片(相关性 > 0.93)进行验证,直接跟踪表面粗糙度和波纹度。我们故意在镍基高温合金 CM247LC 的薄壁结构中植入隆起,在表面凹陷处局部诱发开裂。使用 ICI 现场观察到小至 7 µ m 的裂纹开口,包括亚表面信号。通过量化隆起和开裂,我们证明 ICI 是一种可行的现场裂纹检测工具。