半量词密钥分布允许在两个通信参与者之间生成一个原始密钥,其中发件人是量子参与者,而接收器是经典的参与者。本文介绍了基于超置铃状状态的原始半量子密钥分布协议。超置钟状状态可以同时纠缠在极化和空间自由度,从而增强通道容量。根据超置钟状态的特征,所提出的协议比基于钟状的协议更有效。此外,详细分析了措施 - 重新构成攻击,截距 - 重新发射攻击和纠缠 - 测量攻击。安全性分析表明所提出的协议是安全的。此外,还提出了基于超置钟状态的多方半量子密钥分布方案,该方案可以实现一个量子参与者和多个经典参与者之间的密钥分布。
摘要 未来几代全球导航卫星系统 (GNSS) 可受益于光学技术。特别是光学时钟可以备份或取代目前使用的微波时钟,由于其较低的频率不稳定性,有可能改善 GNSS 定位。此外,光学时钟技术与光学卫星间链路相结合,可实现新的 GNSS 架构,例如,通过使用时间和频率传输技术同步星座内的远距离光学频率参考。基于分子碘的无多普勒光谱的光学频率参考被视为未来 GNSS 光学时钟的有希望的候选者。已经开发出紧凑而坚固的装置,显示在 1 秒到 10,000 秒之间的平均时间内频率不稳定性在 10-15 级别。我们介绍了用于未来 GNSS 的光学时钟技术,并介绍了我们基于碘的光学频率参考的当前开发状态。
Bell态是实现量子信息任务的最基本资源,在量子力学中具有非常独特的地位,而利用轨道角动量(OAM)编码单光子Bell态可以实现高维Hilbert空间,这对于量子信息领域至关重要。本文设计了一种基于Sagnac干涉仪的单光子OAM Bell态演化装置,可以将输入Bell态与输出态一一对应。此外,我们还发展了一种单光子单像素成像(SPI)技术来获取输出态的干涉图像,该技术在提高空间分辨率的同时减少了采集时间。结果表明,通过对比干涉图像的差异可以完全识别单光子OAM Bell态,创新性地将SPI技术应用于单光子OAM Bell态的识别。这表明SPI技术有效促进了基于OAM的量子信息研究,而基于OAM的量子信息又为SPI技术提供了明确的应用场景。
以下框图描述了 AR-51A 的运行。该装置包括铷钟标准,并接受来自内部 GPS 接收器、外部 GPS、外部 1PPS 或外部 IRIG B 的输入。所有输出均来自内部铷钟,该时钟通过数字 PLL 锁定到内部 GPS 接收器或外部输入之一。因此,铷钟的频率和时间平均跟随 GPS。如果 GPS 接收在短时间或长时间内丢失,铷钟将继续保持准确的时间和频率,而不会发生相位中断。
已知 229 Th 原子核具有同质异能态,其能量比基态高出约 8 eV,比典型的核激发能低几个数量级。这启发了低能核物理领域的研究,其中核跃迁率将受电子壳层影响。低能量使 229 Th 同质异能体易于进行共振激光激发。利用激光冷却的捕获钍离子或透明固体中的钍掺杂离子实现核共振,可作为非常高精度光学时钟的参考。这种核钟与传统原子钟之间的精确频率比较将提供对超出标准模型的假设新物理效应的灵敏度。虽然 229 Th 的激光激发仍然是一个尚未解决的难题,但最近的实验已经提供了有关跃迁能量和相关核特性的重要信息。
本文比较了钟形曲线方法和替代性能评估方法。Bell曲线方法在组织中广泛用于估计员工绩效。但是,它是为了创造不利的工作环境和相对于多元化反馈和目标设定而灰心的工作环境,这被认为是对评估员工绩效的更有效和无偏见的方法。本研究使用回归分析研究了不同绩效评估方法与员工结果之间的关联。通过调查,访谈和档案绩效数据收集数据。结果揭示了钟形曲线方法对员工的敬业度和工作绩效产生负面影响,而多源反馈和目标设定方法在创建有利的工作环境时更为实际。定量分析表明,钟形曲线方法与这些结果负相关,而多源反馈和目标设定则呈正相关。调查结果建议组织应重新审查铃曲线方法的使用,并重新调用以员工为中心的方法。多源反馈和目标设定是可以创造公正的工作环境,支持员工发展并推动积极组织成果的潜在替代方案。通过实施替代性能评估方法,组织可以解决劳动力的潜力,并促进一种文化,从而赋予员工繁荣发展。
被困在光场中的超冷碱土原子是丰富的物理系统,是量子信息处理 [ 1 – 4 ]、多体哈密顿量的量子模拟 [ 5 – 9 ] 和量子计量 [ 10 – 14 ] 的有吸引力的候选者。在每种情况下,同时询问许多原子都有助于提高测量精度,但也会产生高原子密度,并且有可能在具有多个原子的晶格位置发生原子间碰撞。对于量子信息和模拟,这些相互作用可能是一个关键特征;然而,对于量子计量,它们带来了不受欢迎的复杂性。例如,碰撞会导致原子钟中密度相关的频率偏移。在所有情况下,都需要很好地理解和控制这些相互作用。为了限制晶格钟中的相互作用,提出了使用超冷自旋极化费米子来利用 s 波碰撞的费米抑制,同时冻结更高的分波贡献。这种费米抑制源于量子统计,它规定相同的费米子粒子只能通过奇数分波碰撞。然而,在费米子 87 Sr(I ¼ 9 = 2)[ 11 , 15 , 16 ] 和 171 Yb(I ¼ 1 = 2)[ 12 ] 中测量到了微小的碰撞偏移,这可能会损害晶格钟的最终精度。我们发现,对于 87 Sr,即使最初无法区分的费米子,s 波碰撞也可能发生 [ 15 , 17 – 19 ]。这些碰撞之所以能够发生,是因为轻原子相互作用引入了一定程度的不均匀性,使费米子变得略微可区分。相比之下,使用 171 Yb,我们在此强调了 p 波碰撞在费米子晶格时钟系统中可以发挥的重要作用。在量子统计的帮助下,我们通过以最先进的精度进行测量以及定量理论模型,展示了 Yb 晶格时钟中冷碰撞的完整图像。此外,我们展示了消除碰撞偏移的新技术,可用于大大降低时钟不确定性。为了简化涉及许多晶格陷阱两级原子相互作用碰撞的复杂系统
科罗拉多大学博尔德分校 (CU Boulder) 和加州大学洛杉矶分校 (UCLA) 的研究人员合作发现了一种使用钍薄膜制造核钟的新方法。新闻稿称,这项技术飞跃相当于在电子产品中使用半导体和集成电路,将允许制造放射性降低 1000 倍且成本更低的核钟。
虽然具有长相干时间的数据量子比特对于量子信息的存储至关重要,但辅助量子比特对于容错量子计算的量子纠错 (QEC) 至关重要。光镊阵列的最新发展,例如大规模量子比特阵列的制备和高保真门操作,为实现 QEC 协议提供了潜力,而下一个重要挑战之一是控制和检测辅助量子比特,同时尽量减少原子损失和串扰。在这里,我们介绍了由双同位素镱 (Yb) 原子阵列组成的混合系统的实现,其中我们可以利用费米子 171 Yb 的核自旋量子比特作为数据量子比特,利用玻色子 174 Yb 的光时钟量子比特作为辅助量子比特,具有无损量子比特读出能力。我们评估了量子比特之间的串扰对 174 Yb 成像光的核自旋量子比特相干性的影响。对于 174 Yb 的 Hahn 回波序列,使用 399 nm 探针和 556 nm 冷却光束,我们观察到在 20 ms 曝光下保留了 99.1 (1.8)% 的相干性,产生了 0.9992 的鉴别保真度和 0.988 的生存概率。使用 556 nm 探测光束的 Ramsey 序列对相干性的影响可以忽略不计,这表明未来低串扰测量可能会有所改善。这一结果凸显了混合 Yb 原子阵列在基于辅助量子比特的 QEC 协议的中路测量中的潜力。