1 美国俄亥俄州辛辛那提市辛辛那提儿童医院医疗中心儿科耳鼻咽喉头颈外科分部,2 美国俄亥俄州辛辛那提市辛辛那提大学医学院耳鼻咽喉头颈外科系,3 美国俄亥俄州辛辛那提市辛辛那提儿童医院医疗中心人类遗传学分部,4 美国俄亥俄州辛辛那提市辛辛那提大学医学院药理学和系统生理学系,5 葡萄牙科英布拉市科英布拉大学神经科学和细胞生物学中心,6 美国肯塔基州列克星敦市肯塔基大学药理学和营养科学系,7 美国肯塔基州列克星敦市肯塔基大学生理学系, 8 美国俄亥俄州辛辛那提市辛辛那提儿童医院医疗中心肺科,9 美国俄亥俄州辛辛那提市辛辛那提儿童医院医疗中心睡眠中心,10 美国俄亥俄州辛辛那提市辛辛那提儿童医院医疗中心昼夜节律医学中心
理发症是实验室小鼠中常见的异常行为,小鼠拔出自己的皮毛和/或笼子伴侣的皮毛或晶须。理发小鼠是福利和研究质量的关注,并且是毛tho虫的自发模型(人类的头发疾病)。原因和预防理解的理解很少。自20年前在该领域的最初工作完成以来,老鼠的饲养发生了巨大变化。,我们根据一年(7007只小鼠)在2544笼子中脱发的观点流行,对实验室小鼠的危险因素进行了更新的分析。我们分析了已知是小鼠压力源的生物,环境和饲养因素的影响。我们发现,尽管住房发生了变化,但某些理发剂(例如性别和育种状况)的某些风险因素仍然存在。我们还基于遗传背景,住房系统,一年中的时间和“热点”效应,还确定了患病率的差异,显示了理发剂的空间聚类。我们的发现可用于增加对这种行为的理解,并告知畜牧业的变化以降低其流行率。
作为精确医学和个性化疗法指导生物医学研究,患者衍生的瘤和人源化小鼠提供了对肿瘤生物学和药物反应的开创性见解。在2024年在海得拉巴举行的第4届国际研究和进步会议植根于3RS的原理(替代,减少和精致),探讨了生物医学研究的创新替代方案,重点是患者衍生的肿瘤和人类化小鼠。该事件在三个主要会议上进行了演讲,重点是Invitro模型,2D至3D细胞培养系统的演变,患者衍生的肿瘤类似以及人源化小鼠在临床前研究中的作用。研究人员强调了传统的2D细胞培养物和动物模型的局限性,主张模仿人类肿瘤微环境的3D细胞培养系统。人性化的小鼠具有人类免疫系统,作为传统动物模型与人类临床结果之间的有前途的桥梁。这次会议以引人入胜的“我们与他们”的辩论 - 风格的面板,比较和对比Invitro模型和人源化的小鼠的优点,并刺激了临床前研究未来方向的对话。该事件展示了持续向更相关的模型的转变,证明了现代研究中对3RS原则的全球承诺,从而促进了传统动物实验的道德和科学强大的替代方案。
仅用于研究使用。不是用于诊断或治疗用途。此产品提供遵守条款和条件的约束,包括位于www.biolegend.com/terms上的有限许可(“条款”),并且只能按条款提供。在不限制上述内容的情况下,Biolegend产品不得用于该术语中定义的任何商业目的,以任何形式转售,用于制造或反向工程,测序或以其他方式研究或用于学习或用于学习其设计或组合的情况,而无需明确的书面批准。不管本文档中给出的信息如何,用户都全权负责确定用户预期使用所需的任何许可要求,并假设使用产品所带来的所有风险和责任。Biolegend对专利侵权或任何其他风险或负债概不负责。Biolegend,Biolegend徽标和所有其他商标都是Biolegend,Inc。或其各自所有者的财产,并且所有权利都保留。8999 Biolegend Way,圣地亚哥,加利福尼亚州92121 www.biolegend.com免费电话:1-877-bio-legend(246-5343)电话:(858)768-5800传真:(877)455-9587
目的:分析长期抗阻训练或耐力训练引起的野生型小鼠海马全基因组表观基因组和转录组变化。方法:我们对小鼠海马进行 4 周特定训练后进行全基因组亚硫酸盐测序 (WGBS) 和 RNA 测序 (RNA-seq)。此外,我们在干预前后使用了一种新颖的物体识别测试来确定锻炼是否导致认知功能的改善。结果:虽然本研究中发现的大多数 DNA 甲基化变化都是训练模型特有的,但大多数与低甲基化有关,并且在相似的组蛋白标记、染色质状态和转录因子结合位点中富集。值得强调的是,Tet1 结合位点 DNA 甲基化的缺失与基因表达变化之间存在显著关联,表明这些表观基因组变化在转录调控中的重要性。然而,耐力和阻力训练激活不同的基因通路,耐力训练激活的基因通路与神经可塑性有关,阻力训练激活的基因通路与干扰素反应通路有关,这似乎也与学习和记忆功能的改善有关。结论:我们的研究结果有助于理解不同运动模式对大脑健康产生有益影响的分子机制,并为未来的研究提供新的潜在治疗靶点。2021 作者。由 Elsevier GmbH 出版。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
。CC-BY-ND 4.0 国际许可下可用(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2021 年 12 月 17 日发布。;https://doi.org/10.1101/2021.12.16.472938 doi:bioRxiv 预印本
血友病A(HA)是由凝血因子VIII(FVIII)引起的一种常见出血疾病,长期以来一直被认为是基因治疗研究的有吸引力的靶标。然而,全长F8 cDNA不能通过腺相关病毒(AAV)向量能够充分包装。作为引起严重HA的第二大突变,F8内含子1反转(INV1)是由内骨体内重组引起的,因此大多数F8(外显子2-26)未转录。从理论上讲,可以通过整合启动子和外显子1。为了在体内测试此策略,我们通过删除F8的启动子区域和外显子1来生成HA小鼠模型。供体DNA和CRISPR/SACAS9被包装到AAV载体中,并静脉注射到HA小鼠中。治疗后,恢复F8表达并缩短了激活的部分凝血蛋白时间(APTT)。我们还比较了两个肝脏特异性启动子和两种整合供体向量。使用活性启动子时,所有处理过的小鼠都在尾盘挑战中幸存下来。这是一个体内基因修复策略的第一个报告,有可能治疗HA患者的复发突变。
《自然》杂志的一项研究报告了酵母酿酒酵母作为组装和维护各种 RNA 病毒基因组(包括 SARS-CoV-2)的平台的适用性,该平台可实现对 SARS-CoV-2 的基因操作和功能表征。在疫情爆发期间,病毒分离株可用于开发诊断、体内模型、抗病毒疗法和疫苗。如果病毒分离株的可用性有限,可以从化学合成的 DNA 中克隆病毒基因组,但使用大肠杆菌的既定方法通常不足以容纳冠状病毒(冠状病毒科)等 RNA 病毒的大型基因组。Thao 等人将转化相关重组 (TAR) 克隆应用于含有 GFP 基因的小鼠肝炎病毒 (MHV),该病毒具有成熟的反向遗传学平台。将覆盖 MHV-GFP 基因组和 TAR 载体的重叠 DNA 片段转化到酵母中,DNA 片段通过同源重组组装,产生包含全长病毒 cDNA 的酵母人工染色体 (YAC)。值得注意的是,90% 以上的筛选克隆显示 YAC 组装正确,表明组装效率高。通过分离和线性化 YAC 进行体外转录以生成病毒 RNA,成功从两个单个克隆中回收了传染性病毒,然后将其与编码 MHV 核衣壳蛋白的 mRNA 一起转染到 BHK-MHV-N 仓鼠细胞系中,以产生和扩增病毒。回收的病毒表现出与亲本 MHV-GFP 相同的复制动力学。该团队着手确定合成基因组学平台是否可以应用于 MERS-CoV,使用低拷贝细菌人工染色体 (BAC) 从八个重叠的 PCR 扩增 DNA 片段克隆病毒。该方法还应用于突变的 MERS-CoV 克隆,该克隆中插入了 GFP 基因。YAC 克隆组装和从克隆 DNA 中拯救病毒均取得成功,确定了该平台可适用于更广泛的病毒,包括转基因病毒基因组。进一步的实验确定病毒基因组可以稳定维持,并且该平台适用于其他难以克隆的病毒,例如寨卡病毒(黄病毒科)和人类呼吸道合胞病毒(副粘病毒科),包括直接从临床样本中克隆,而无需事先了解病毒基因型。令人惊讶的是,在收到基于 2020 年 1 月发布的基因组序列的 SARS-CoV-2 合成 DNA 片段后 1 周内,就实现了重组 SARS-CoV-2 和 SARS-CoV-2-GFP 的克隆和拯救。总之,这项研究展示了合成基因组学平台在疫情期间从不同起始材料(包括病毒分离物、克隆 DNA、合成 DNA 或临床样本)快速生成和功能表征进化 RNA 病毒的实用性。
引言 转基因小鼠被广泛用于研究基因功能和建立人类疾病模型。传统的基因打靶方法 1 ,是通过在小鼠 ES 细胞中同源重组 (HR) 引入突变来生成的突变小鼠。注射入野生型 (WT) 小鼠囊胚的靶向 ES 细胞可形成嵌合小鼠的生殖系,当嵌合小鼠通过生殖系传递时,就会产生含有靶基因的后代 1 。通过 ES 细胞的 HR 生成突变小鼠成本高且耗时,因为需要选择基因打靶的 ES 细胞克隆并注射入囊胚来生成嵌合小鼠,然后必须对其进行繁殖以产生单基因突变后代,这个过程通常需要 9 到 12 个月。构建携带多个突变的小鼠将增加更多的时间和精力。此外,HR 基因靶向需要使用 ES 细胞技术,而大多数哺乳动物物种无法使用这种方法。
。CC-BY-ND 4.0 国际许可,根据 未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者(此版本于 2020 年 5 月 8 日发布。;https://doi.org/10.1101/2020.05.06.081174 doi:bioRxiv 预印本