图1显示了与冰箱9氨水冷却器集成的冰川系统的示意图。TES具有现有的氨冷藏量,以优化主要生产环境中的过程冷却技术。ThermCold Dyn 900 TES单元提供2.6 MWH(电池等效电池的650 kWh)储能。冰川选定的PCM 0(0˚CPCM)作为此应用程序的最佳PCM,Dynalene HC30作为HTF。与TES系统结合使用,开发了高级控制预测算法(ACFA)。ACFA的实施是为了预测热负载,电力要求和电力成本,以管理充电和排放事件并降低电力成本。预测价格遵循国家能源市场(NEM)在线发布的建议零售价(RRP)。
冰川地下水可以在北极的冰川和多年冻土下动员深处的甲烷,从而导致这种温室气体的大气排放。我们提出了一个暂时的水力化学数据集,该数据集是在两个熔融季节中从高北极冰川前场收集的富含甲烷的地下水,以探索甲烷排放的季节性动态。我们使用甲烷和离子浓度以及水和甲烷的同位素组成来研究地下水的来源以及地下水传输到表面的甲烷的起源。我们的结果表明了两个地下水的来源,一个浅层和一个深层,它们混合和中等的甲烷动力学。在夏季,富含甲烷的地下水被浅含氧地下水稀释,导致某些微生物甲烷在表面出现之前。地下水中微生物组成的表征表明,微生物活性是沿该流路线的重要季节性甲烷下沉。在所研究的地下水池中,我们发现由于微生物氧化,整个夏季,潜在的甲烷排放平均减少了29%(±14%)。在冬季,由于冷冻,减少地下甲烷氧化并有可能允许更大的甲烷排放,因此许多浅层系统关闭,而深层地下水保持活跃。我们的结果表明,随着含水层的能力和补给量在变暖的气候下增加,不同地下水来源的比率将在未来发生变化。
背景:地下水是最大的淡水资源,构成了全球水周期的活跃组成部分。它是双胞胎人群的主要淡水来源,并为众多社区提供饮用水。此外,地面供水超过40%的全球灌溉需求,并且在减轻气候变化引起的水稀缺性方面变得越来越重要。在过去的几十年中,Climente的变化和其他人为活性发生了实质性改变的地下水补给,排放,流动,存储和分布。气候变暖 - 诱发冰川再治疗和多年冻结融化导致冰川和多年冻土区域的地下水变化。为了促进对环形地下水状态的更详细的理解,我们介绍了其在近几十年来全球水周期中变化的性质的综合,这是由气候变化和其他各种拟人化活性的影响所塑造的。
orcaa:一个模拟欧罗巴冷冻ob派任务到阿克尼亚克州朱诺冰菲尔德。E. Lesage 1(Elodie.lesage@jpl.nasa.gov),S。M。Howell 1,S。Campbell2,3,J。Mikucki4,M。Smith1,D。Winebrenner5,T.A.Cwik 1,J。Burnett1,J。Burnett5,B。B。 品牌5,B。Hockman1,M。Pickett5,K。Tighe1,J。Clance4,R。Clavette2,S。Haq1,J。Holmes2,3,J。Shaffer4。 1缅因州2号加利福尼亚理工大学的喷气推进实验室,田纳西大学4朱诺冰菲尔德研究计划3号,诺克斯维尔大学4号,华盛顿大学5号大学应用物理实验室。 简介:对欧罗巴和其他海洋世界的未来探索可能涉及使用自主熔体探针(称为冷冻机器人)的直接原位访问和冰壳和地下液态水的特征[1,2,3]。 海洋世界侦察和天体类似物(ORCAA)项目的侦察和表征是一项多机构的努力,通过NASA的行星科学技术和通过模拟研究(PSTAR)计划资助。 ORCAA旨在通过行星地下探索技术来提高我们对地球上冰圈环境的理解,同时设想为未来的ICY地下访问任务提供科学操作。 我们的整体目标包括陆地冷冻射手通过两个野外活动来展示冰山下湖的通道。 我们计划采样和分析冰川井眼融化和冰川下水,以了解冰冷的宜居环境的演变及其居住的寿命。 1)。E. Lesage 1(Elodie.lesage@jpl.nasa.gov),S。M。Howell 1,S。Campbell2,3,J。Mikucki4,M。Smith1,D。Winebrenner5,T.A.Cwik 1,J。Burnett1,J。Burnett5,B。B。品牌5,B。Hockman1,M。Pickett5,K。Tighe1,J。Clance4,R。Clavette2,S。Haq1,J。Holmes2,3,J。Shaffer4。1缅因州2号加利福尼亚理工大学的喷气推进实验室,田纳西大学4朱诺冰菲尔德研究计划3号,诺克斯维尔大学4号,华盛顿大学5号大学应用物理实验室。简介:对欧罗巴和其他海洋世界的未来探索可能涉及使用自主熔体探针(称为冷冻机器人)的直接原位访问和冰壳和地下液态水的特征[1,2,3]。海洋世界侦察和天体类似物(ORCAA)项目的侦察和表征是一项多机构的努力,通过NASA的行星科学技术和通过模拟研究(PSTAR)计划资助。ORCAA旨在通过行星地下探索技术来提高我们对地球上冰圈环境的理解,同时设想为未来的ICY地下访问任务提供科学操作。我们的整体目标包括陆地冷冻射手通过两个野外活动来展示冰山下湖的通道。我们计划采样和分析冰川井眼融化和冰川下水,以了解冰冷的宜居环境的演变及其居住的寿命。1)。通过这项工作,我们还旨在阐明可以允许营养迁移的水文连通性的重要性,并在行星冰壳中建立宜居或居住的壁ni。统一这些科学和技术演示目标,我们将通过与一个远程行星科学团队在欧罗巴的地下访问科学任务中模拟命令周期来演示科学的操作概念(CONOPS)。虽然没有陆地冰川是欧罗巴的完美物理,化学或生物类似物,但朱诺冰菲尔德提供了多样化的冰川系统,可以在其中研究冰川微生物组,水文和概念操作,围绕熔体探针部署和样品处理(图
海平面上升有两个主要原因——你知道是什么吗?1. 第一个原因是冰盖和冰川融化,导致海洋水量增加。2. 第二个原因是随着海洋变暖,其体积不断膨胀,这意味着水占据了更多的空间并上升。
“最近,已经发现(在这些冰川)被低估或预测的水下熔化的贡献。在格陵兰等许多地方,水下熔化正在加快整体冰的损失。这要求在这些冰川上更准确地测量冰损,并通过多种方式进行了交叉验证。”
朱诺,美国阿拉斯加,人口约30,000名居民,在2023年创下了160万巡航乘客的记录,在最繁忙的日子里,有多达7艘大型游轮,大约有20,000名游客。[1]尽管这些游客以3.75亿美元的价格为这座城市带来了可观的收入,但[2]他们还带来了与拥挤的问题,这些问题使该市正在努力限制客人的数量。具有讽刺意味的是,朱诺的首要景点之一Mendenhall Glacier一直在退缩,这主要是由于过度造成的,部分原因是越来越多。冰川自2007年以来就已经退缩了八个足球场,导致许多当地人担心游客和相关的收入最终将随着冰川而消失。[3]幸运的是,朱诺还有其他景点,包括观看鲸鱼和雨林,并可以保持其作为旅游目的地的地位,前提是他们可以制定并制定可持续旅游业的计划。
1 海平面上升 8 2 水利和发电厂 10 3 尼泊尔的冰川融化、冰川湖溃决洪水和水电 11 4 胡志明市能源部门的脆弱性 12 5 气候变化对印度、斯里兰卡和越南水电项目的影响 13 6 适应科学 20 7 选定的气候变化风险筛选工具 24 8 情景开发和影响评估的其他资源 33 9 社区参与的其他资源 37 10 提高吉尔吉斯共和国水电部门的气候适应能力 42 11 巴布亚新几内亚城镇电气化投资计划 51 12 印度喜马偕尔邦萨特莱杰河流域的气候变化和水电 52 13 强有力地适应气候变化 54 14 应用气候视角 61 15 近期应对气候变化的行动 63 16 适应气候变化的机构的九大标志 64