此预印本版的版权持有人于2025年3月3日发布。 https://doi.org/10.1101/2025.02.28.640855 doi:Biorxiv Preprint
从SSO的角度来看,对SAML的内置支持(安全断言标记语言)以及SCIM(跨域身份管理的系统)为组织提供了将网络视为资源或服务提供商(SP)的能力。随着客户从使用半径和复杂的NAC解决方案转移,尼罗河提供了利用SSO进行无线访问以及有线连接的能力,这是唯一的。也可以说是为了支持SCIM,特别是针对需要集中解决方案来管理和删除按大规模访问申请的组织。
玉米是世界许多国家人类生活中卡路里和蛋白质的重要来源,是非洲的主要主食食品,特别是在非洲东部。在苏丹,玉米的低收益主要是由于使用低屈服的陆地。有必要执行繁殖计划,以处理高产,适应性新品种的生产。因此,本研究旨在估计特征之间的遗传变异性,遗传力,基因型性能和相互关系。在2021年和2022年的两个季节中,在农业研究公司(ARC)的WAD MEDANI SUDAN的Kosti White Nile Research Station Farm评估了十种玉米基因型。大多数评估的基因型在11个测得的特征中表现出广泛而显着的变化。在两个季节中,记录了几天的变异和遗传进展的基因型基因型系数,每行耳朵直径(CM),每行谷物数量(T/HA)。记录了高遗传力和遗传进展的谷物产量,耳长,耳朵高度,植物高度,每耳朵的行,耳朵重量,天数至50%的流苏,100粒的重量以及天数至50%丝线。超过了,谷物产量与每耳的行数(r = 0.479),耳朵长度(r = 0.381),100粒重量(r = 0.344)和天数到50%的流苏(r = 0.214)。在整个季节中,最高的五种基因型是TZCOM1/ZDPSYN(4.2 T/HA),EEPVAH-3(4.2 T/HA),F2TWLY131228(4.1 T/HA)(4.1 T/HA),PVA SYN6F2(3.9 T/HA)和MAIMIE SIMIED MAIMIES SURGITION和EEPVAH-9(3.8 T/HA),以使其稳定稳定。释放的声音建议。
。cc-by-nc-nd 4.0国际许可证可永久提供。是作者/资助者,他已授予Medrxiv的许可证,以显示预印本(未经同行评审证明)的预印本版权持有人的此版本发布于2025年2月8日。 https://doi.org/10.1101/2025.02.07.25321837 doi:medrxiv Preprint
蚊子中肠作用是病原体和载体之间的关键界面。然而,对中肠生理学和病毒感染动态的研究很少,在Culex tarsalis中,西尼罗河病毒(WNV)极有效的载体(不存在)。我们在CX上进行了单细胞RNA测序。tarsalis midguts,定义了多种细胞类型,并确定了特定的细胞类型是否更允许WNV感染。我们确定了20个细胞状态,其中包括8种不同的细胞类型,与果蝇和伊迪斯伊蚊的现有描述一致。大多数中肠细胞种群允许WNV感染。然而,肠内分泌细胞(EE)中的WNV RNA(VRNA)水平较高,表明该人群的复制增强。相反,增殖的肠干细胞(ISC)的VRNA水平最低,这一发现与表明中肠中ISC增殖的研究一致,参与感染对照。iSC对WNV感染具有强烈的转移反应;在WNV感染的ISC种群中,涉及核糖体结构和纤维基因SIS的基因显着下调。值得注意的是,我们没有检测到明显的WNV感染引起的蚊子抗病毒免疫基因的上调(例如,AGO2,R2D2等)在整个中型水平上。相反,我们观察到了免疫基因表达水平与单个细胞中的VRNA负载之间存在显着的正相关,这表明在中肠细胞中,高水平的VRNA可能会触发抗病毒反应。我们的发现建立了CX。tarsalis midgut细胞地图集,并通过表征细胞类型的特异性增强/限制,并在单细胞水平上介绍对WNV的中肠感染动力学的见解。
因此,峰值强度的测量确实提供了有关每个样品中相应矿物相的相对量的信息。沉积物指纹将沉积物的矿物学或地球化学性质与其来源材料联系起来。如果可以通过其地球化学性质区分来源材料,则可以通过比较沉积物和来源材料的性质来确定沉积物的可能来源(Walling 等人,2003 年)。需要区分几个潜在的沉积物来源区域意味着单一的指纹属性通常不太可能提供可靠的来源指纹。因此,最近的大多数源指纹研究都使用了复合指纹,包括一系列不同的诊断属性和混合模型来量化来自不同来源的沉积物的相对贡献(Collins 和 Walling,2002 年;Collins 等人,2010 年)。聚类分析是一种强大的工具,可用于对数据进行分类和排序,以建立此类数据之间的关系(Sneath 和 Sokal,1973 年;Yang 和 Simaes,2000 年)。聚类分析也称为分割分析或分类分析(Aldenderfer 和 Blashfield,1984 年;Everitt 等人,2001 年)。该方法创建具有“相似性”的对象分组,这些相似性可以用任何可测量的参数来量化。许多不同的研究领域,如工程学、动物学、医学、语言学、人类学、心理学、市场营销,甚至地质学,都为聚类技术的发展及其应用做出了贡献(Cortés 等人,2007 年;de Meijer 等人,2001 年;Mamuse 等人,2009 年)。可以执行两种聚类分析方法:(1)层次聚类(Johnson,1967;Kaufman 和 Rousseeuw,2009),其中使用迭代算法将数据分组到聚类中(2)K 均值聚类(Army,1993;Kanungo 等,2002;Wagstaff 等,2001),其中聚类的数量是预先定义的,并且所有数据点根据某些特定特征或指标分布到聚类中。在本研究中,层次聚类用于创建聚类树,也称为树状图,从而允许决定最适合应用的聚类级别或规模。有多种执行层次聚类的方法,例如:1. 单链接方法,基于使用一个聚类内的一个个体与相邻聚类中一个个体之间的最小距离构建的层次结构。该方法有助于识别不规则的簇形状,但由于统计测试表现不佳以及层次树的图形表示难以解释而无法获得有关完整簇大小和形状的直接定量信息,因此受到限制。
本课程将对不同时期的古埃及文化和历史进行一般介绍。我们将特别关注尼罗河沿岸的埃及,探索这条河在支持运输和贸易以及通过其所拥有的资源和它所滋养的肥沃土地提供赏金方面的作用。虽然尼罗河是重要的生命之源,但它也是危险生物和寄生虫的家园,而每年洪水的波动可能会对景观和居住在那里的人造成毁灭性的影响。在整个讲座系列中,我们将通过考古遗迹和文本资料讨论尼罗河谷沿岸古埃及社会的出现和发展,讨论诸如写作的出现、宗教信仰、王权意识形态、治理和官僚主义、丧葬文化和金字塔建筑以及气候变化等主题。我们还将探讨古埃及在更广泛的地中海世界中的作用,以及在探索和利用过去方面发挥的现代议程。
药物发现AI数据集和基准传统上不包括单细胞分析生物标志物。虽然单细胞分析中的基准努力最近发布了单细胞任务的集合,但他们尚未全面释放数据集,模型和基准测试,这些数据集,模型和基准分析以细胞类型的特异性生物标志物进行整体的各种治疗性发现任务。Therapeutics Commons(TDC-2)介绍了将特定于细胞类型的上下文特征与跨治疗剂的ML任务相结合的数据集,工具,模型和基准。我们介绍了单细胞分辨率的上下文学习的四个任务:药物目标提名,遗传扰动反应预测,化学扰动响应预测和蛋白质肽相互作用预测。我们为这四个任务介绍数据集,模型和台上标记。最后,我们详细介绍了驱动TDC-2实施的机器学习和生物学的进步和挑战,以及如何在其体系结构,数据集和基准和基础模型工具中反映它们。
蛋白质tau的抽象聚集定义了tauopathies,其中包括阿尔茨海默氏病和额颞痴呆。特定的神经元亚型有选择地容易受到tau聚集的影响,随后的功能障碍和死亡,但潜在的机制尚不清楚。系统地揭示了控制人类神经元中Tau聚集体积累的细胞因子,我们在IPSC衍生的神经元中进行了基于基因组CRISPRI的修饰筛网。屏幕发现了预期的途径,包括自噬,以及意外的途径,包括ufmylation和GPI锚构成。我们发现E3泛素连接酶CUL5 SOCS4是人类神经元中tau水平的有效修饰符,泛素化tau,与小鼠和人类中的auopanty的脆弱性相关。线粒体功能的破坏会促进tau的蛋白酶体错误处理,从而产生tau蛋白水解片段
参考文献 1. Young A. 西尼罗河病毒。加州大学戴维斯分校兽医学系。2021 年 11 月 19 日。https://ceh.vetmed.ucdavis.edu/health-topics/west-nile-virus。2024 年 8 月 26 日访问。 2. 媒介传播的东部马脑炎和西尼罗河病毒威胁着马和其他哺乳动物,包括人类。密歇根州立大学兽医学院。https://cvm.msu.edu/vdl/client-education/newsletter/summer-2018/vector-borne-eastern-equine-encephalitis-and-west-nile-virus-threaten-horses-and-other-mammals- including-humans#:~:text=Prevalence%20of%20EEE%20a nd%20WNV,in%20the%20number%20equine%20WNV。访问时间:2024 年 8 月 26 日。3. 核心疫苗接种指南。美国马兽医协会网站。http://www.aaep.org/-i-165.html。访问时间:2023 年 8 月。4. Epp T、Waldner C、West K。萨斯喀彻温省马匹接种西尼罗河病毒疫苗的有效性。论文发表于:第 51 届美国马兽医协会会议论文集。2005;180-182。5. Epp T、Waldner C、Townsend HGG。2003 年萨斯喀彻温省西尼罗河病毒临床疾病发展相关因素的病例对照研究。Equine Vet J。2007;39:498-503。6. Davis EG、Zhang Y、Tuttle J 等人。接种灭活西尼罗河病毒疫苗的健康马匹抗原特异性淋巴细胞反应调查。兽医免疫学与免疫病理学。2008;126(3-4):293-301。7. Davis EG、Bello NM、Bryan AJ 等人。在 90 日龄或 180 日龄开始多价疫苗方案时健康马驹的免疫反应特征。马兽医杂志。2014。doi:10.1111/evj.12350。8. Cortese V、Hankins K、Holland R 等人。西尼罗河病毒血清阴性成熟马对西尼罗河病毒疫苗的血清学反应。马兽医杂志。2013;33:1101-1105。 9. 文件中的数据,截至 2015 年 12 月 31 日 WEST NILE-INNOVATOR 的 MDI 销售数据,Zoetis LLC。