铁电纤锌矿具有彻底改变现代微电子学的潜力,因为它们很容易与多种主流半导体平台集成。然而,为了与互补金属氧化物半导体 (CMOS) 电子产品兼容,需要大幅降低反转其极化方向和解锁电子和光学功能所需的电场。为了了解这一过程,我们用扫描透射电子显微镜在原子尺度上观察并量化了代表性铁电纤锌矿 (Al 0.94 B 0.06 N) 的实时极化切换。分析揭示了一种极化反转模型,其中纤锌矿基面中褶皱的铝/氮化硼环逐渐变平并采用瞬态非极性几何结构。独立的第一性原理模拟揭示了通过反极性相的反转过程的细节和能量。该模型和局部机械理解是这种新兴材料类别的属性工程工作的关键初始步骤。B
1. 1. 高丽大学医学院,高丽大学医学院,九龙区,0830,韩国 4. ,大田,34141. 高丽大学医学院,西望,西北路,02841 08308
对几种控制线的稳态形状和风梯度引起的振动的候选方案进行了研究。使用经典振动链开发了计算机模拟,将自由/固定边界条件叠加在线的稳态形状和张力分布上。分析中考虑了几种形式的恢复力和耗散力。证明了叠加方法在很宽的操作范围内的有效性。开发了一种控制律,它调节拖曳机轨道半径,并证明了所有振动减少 50% 或更好的潜力。研究了第二种方案,即在线的尾端使用可控减速伞。可控减速伞在减少振动方面取得了有限的成功,但在调整线的稳态形状方面很有用。
对几种控制线的稳态形状和风梯度引起的振动的候选方案进行了研究。使用经典振动链开发了计算机模拟,将自由/固定边界条件叠加在线的稳态形状和张力分布上。分析中考虑了几种形式的恢复力和耗散力。证明了叠加方法在很宽的操作范围内的有效性。开发了一种控制律,它调节拖曳机轨道半径,并证明了所有振动减少 50% 或更好的潜力。研究了第二种方案,即在线的尾端使用可控减速伞。可控减速伞在减少振动方面取得了有限的成功,但在调整线的稳态形状方面很有用。
极化和铁电转变温度之间的关系 ( 5 ) – 即它们可能不是软模式铁电体;(ii) 实现铁电性的新物理机制几乎肯定会带来不同的物理缩放趋势表现和不同的温度、压力和时间特性依赖性;(iii) 这些材料可以在室温或接近室温下加工,具有稳健的特性响应,在某些情况下(例如、Al 1-x B x N)为 40
摘要背景:妊娠期由于纤溶和凝血系统发生变化,导致血液处于高凝状态。这些变化包括促凝物质增加和低纤溶,这是由于纤溶酶原激活剂抑制剂-2 增加和恶性疟原虫 (Pf) 通过分泌恶性疟原虫红细胞膜蛋白-1 (Pf Emp-1) 诱导的凝血所致,加剧了孕妇的病情。本研究评估了感染恶性疟原虫疟疾的孕妇血浆 PAI-2 抗原水平。材料和方法:这项以医院为基础的横断面研究招募了 85 名孕妇,其中 55 名 (64.7%) 为 Pf 疟疾阳性,30 名 (35.3%) 为 Pf 疟疾阴性(对照组)。在无菌条件下抽取静脉血,进行薄血膜和厚血膜疟原虫显微镜检查、全血细胞计数分析,并用夹心 ELISA 测定 PAI-2 Ag 水平。使用 SPSS 26.0 版进行数据分析,p<0.05 认为具有统计学意义。结果:Pf 疟疾感染孕妇的血红蛋白、RBC、HCT、MCV、MCH、MCHC、绝对淋巴细胞计数和 PLT 值低于对照孕妇组(p<0.05)。孕周、妊娠次数、产次和妊娠间隔对参与者的 PAI-2 浓度没有显著影响(p=0.425、p=0.953、p=0.174 和 p=0.826)。Pf 疟疾孕妇的 PAI-2 水平高于对照组孕妇(p<0.001)。疟原虫密度与 PAI-2 Ag 水平之间存在显著相关性(r=0.812,p<0.001)。结果表明,PAI-2 Ag 浓度随疟原虫密度增加而增加。结论:感染恶性疟原虫的孕妇血浆 PAI-2 抗原水平高于未患疟疾的孕妇。结果表明,PAI-2 Ag 水平随疟疾感染的进展和疟原虫密度增加而增加。疟疾和妊娠的发病机制可能导致红细胞参数和血小板减少。
描述:纤溶酶原激活剂抑制剂 1 ((SERPINE1/PAI1) 是组织纤溶酶原激活剂 (tPA) 和尿激酶 (uPA) 的主要抑制剂,而组织纤溶酶原激活剂和因此而引起的纤维蛋白溶解。它是一种丝氨酸蛋白酶抑制剂 (serpin) 蛋白 (SERPINE1)。PAI1 主要由内皮细胞产生,但也由其他组织类型分泌,例如脂肪组织。SERPINE1 基因缺陷是纤溶酶原激活剂抑制剂 1 缺乏 (PAI1 缺乏) 的原因,而高浓度的 SERPINE1/PAI1 与血栓形成有关。
版权所有©2014年,科罗拉多大学的摄政员代表其员工:Daniel D Matlock MD MPH;丹尼·维吉尔(Danny Vigil);艾米·詹金斯MS;卡伦·梅利斯(Karen Mellis); Paul Varosy MD;弗雷德·马苏迪(Fred Masoudi)医学博士,MSPH; Angela Brega博士;大卫·马吉德(David Magid)医学博士,美国国立衰老研究所(K23AG040696)和以患者为中心的结果研究所(PI000116-01)的MPH资助。利益冲突:所有开发人员 - 无。上次更新08/13/2024。保留一些权利。未经出版商的明确书面许可,本出版物的任何商业开发或努力都不得使用。 未经出版商的许可并提供其确认的任何衍生作品,本出版物的任何部分都不得使用。 科罗拉多大学违反了与本文提供的信息的使用或采用相关的所有责任。 用户应对依赖此信息造成的任何损害负责。 内容仅是作者的责任,不一定代表资金机构(NIH,PCORI)或医疗中心的官方观点。 此信息图上提供的材料仅用于信息目的,并且不作为医疗建议提供。 任何人都应在确定ICD是否适合他或她的情况下咨询自己的医生。 这项工作是根据创意共享归因,非商业,无衍生物4.0国际许可证获得许可的。未经出版商的明确书面许可,本出版物的任何商业开发或努力都不得使用。未经出版商的许可并提供其确认的任何衍生作品,本出版物的任何部分都不得使用。科罗拉多大学违反了与本文提供的信息的使用或采用相关的所有责任。用户应对依赖此信息造成的任何损害负责。内容仅是作者的责任,不一定代表资金机构(NIH,PCORI)或医疗中心的官方观点。此信息图上提供的材料仅用于信息目的,并且不作为医疗建议提供。任何人都应在确定ICD是否适合他或她的情况下咨询自己的医生。这项工作是根据创意共享归因,非商业,无衍生物4.0国际许可证获得许可的。
对几种控制线的稳态形状和风梯度引起的振动的候选方案进行了研究。使用经典振动链开发了计算机模拟,将自由/固定边界条件叠加在线的稳态形状和张力分布上。分析中考虑了几种形式的恢复力和耗散力。证明了叠加方法在很宽的操作范围内的有效性。开发了一种控制律,它调节拖曳机轨道半径,并证明了所有振动减少 50% 或更好的潜力。研究了第二种方案,即在线的尾端使用可控减速伞。可控减速伞在减少振动方面取得了有限的成功,但在调整线的稳态形状方面很有用。
第 4 章 姿态控制 ..................................................................................................................................................................................39 4.1 姿态误差....................................................................................................................................................................................................41 4.1.1 四元数姿态误差....................................................................................................................................................................................41 4.1.2 解算倾斜扭转....................................................................................................................................................41 .................................................................................................................................................................................43 4.1.3 解析欧拉角....................................................................................................................................................................................49 4.1.4 姿态误差对比....................................................................................................................................................................................................61 4.2 姿态控制....................................................................................................................................................................................................................................61 62 4.2.1 PID . ... . ...
