航空事实 ❚❚ 平均每三秒就会有一架飞机离开地球表面。❚❚ 从统计上讲,航空运输是最安全的交通方式。❚❚ 直升机最初实际上是由列奥纳多·达·芬奇于 1483 年构思出来的。❚❚ 一架波音 747 有 18 个轮子、一个螺旋楼梯,机翼上可以停放 45 辆汽车。❚❚ 在起飞功率下,流过一台波音 767-400ER 发动机的空气可以在七秒内给固特异飞艇充气。❚❚ 乘坐波音 767-400ER 从纽约飞往伦敦(约 5,580 公里)时,每位乘客大约需要 227 升燃油。相同体积的汽油只能推动一辆经济型汽车行驶该距离的一半。❚❚ 一架波音 747-400 有 600 万个零件,其中一半是紧固件。❚❚ 直升机在恶劣天气下飞行比固定翼飞机更安全,因为它们可以减速、悬停以及向后或侧向飞行。❚❚ 飞机的机长和副驾驶在飞行过程中总是吃不同的饭菜,以防其中一人生病。❚❚ 波音 747 上的每个引擎重近 4,300 公斤,成本约为 800 万美元,巡航时每分钟燃烧约 45.4 升燃料。总共四个引擎占整架 747 起飞时总重量的约 5%。❚❚ 平均而言,每小时有 61,000 人在美国上空飞行。❚❚ 无人驾驶飞行器 (UAV)(也称为遥控飞行器 [RPV] 或无人机系统 [UAS])是一种无需人类机组人员飞行的飞机,由地面控制站的人类机组人员驾驶。❚❚ 飞机后面的“白烟”实际上是水蒸气与废气的混合物;它被称为凝结尾迹或“尾迹”。水是燃烧的副产品。根据大气条件,尾迹每天都会出现在特定的高度。❚❚ 跑道是根据盛行风选择的,因为飞机通常或多或少地迎风起飞和降落。
图 8 - 波音当前市场展望 2011-2030 ...................................................................................................... 30 图 9 - 卷云和蒸汽尾迹(航空运输行动小组) .............................................................................................. 32 图 10 - 减排路线图(ATAG 2010) ............................................................................................................. 37 图 11 - 飞机轻质复合材料百分比(ATAG 2010) ............................................................................................. 41 图 12 - ATM 效率分类 ............................................................................................................................. 48 图 13 - 相互依赖性和可恢复效率 ............................................................................................................. 48 图 14 - 其他行业近期成功的财务激励措施示例 ............................................................................................. 72 图 15 - 当前和计划中的 ETS 方案示例 ............................................................................................................. 76 图 16 - CDO 说明 ............................................................................................................................................. 81 图 17 - 机队平均负荷因素及与英国其他运输方式的相对比较......................................................................................................................................
实验室名称1富士实验室2山摩托实验室3山原实验室4萨萨哈拉实验室5木马实验室6 Murata实验室7 Murata实验室8 Kawabata Laboratory 9 Kawabata实验室9 Okubo实验室10 Shibuo Laboratory 10 Shibuo实验室实验室11 Matsuoka Laboratory 12 Yamada Laboratory 13 YAMADA Laboratory 14 Okub sheratory 14 Okuubi fujiuchi 14 o实验室18 SASA实验室19 Shibuo实验室20 Noguchi实验室21 Fujiuchi Laboratory 22 Kawabata Laboratory 23 SASA实验室23 SASA实验室24 Noguchi Laboratory 25 Shibuo实验室25 Shibuo实验室26 IWAI实验室27 SASA实验室27 Sasa Laboratory 28 Kawabata Labotoration 28 Kawabata实验室29 Haseguchi Laguchi Laguchi Laboratory 30 Noguchi Laboratory 31 Noguchi Laboration 31 31 Murata实验室32 Fujiuchi实验室33 Yamada Laboratory 34 Fujiuchi Laboratory 35 Sakamoto Laboratory 36 SASA实验室37 Hasegawa Laboratory 38 Hasegawa Laboratory
氢还可以用于燃料电池发电——燃料电池是一种通过一系列涉及氧气的反应将氢中的化学能转化为电能和热能的装置,副产品是水。燃料电池可以独立用于螺旋桨飞机(例如涡轮螺旋桨飞机)的推进。然而,考虑到燃料电池的功率密度限制,长途飞行和重载荷不太可能完全由燃料电池提供动力。5F 6 为了增加航程和有效载荷大小,燃料电池还可以用于混合电力推进系统,该系统配有氢燃烧燃气涡轮发动机。6F 7 在混合动力系统中,燃料电池在巡航飞行期间充当主要动力源,燃气涡轮机用于提供起飞和爬升的主要推力。混合动力系统的环境效益包括提高燃油效率、减少氮氧化物排放和尾迹形成。7F 8
对几种控制线的稳态形状和风梯度引起的振动的候选方案进行了研究。使用经典振动链开发了计算机模拟,将自由/固定边界条件叠加在线的稳态形状和张力分布上。分析中考虑了几种形式的恢复力和耗散力。证明了叠加方法在很宽的操作范围内的有效性。开发了一种控制律,它调节拖曳机轨道半径,并证明了所有振动减少 50% 或更好的潜力。研究了第二种方案,即在线的尾端使用可控减速伞。可控减速伞在减少振动方面取得了有限的成功,但在调整线的稳态形状方面很有用。
对几种控制线的稳态形状和风梯度引起的振动的候选方案进行了研究。使用经典振动链开发了计算机模拟,将自由/固定边界条件叠加在线的稳态形状和张力分布上。分析中考虑了几种形式的恢复力和耗散力。证明了叠加方法在很宽的操作范围内的有效性。开发了一种控制律,它调节拖曳机轨道半径,并证明了所有振动减少 50% 或更好的潜力。研究了第二种方案,即在线的尾端使用可控减速伞。可控减速伞在减少振动方面取得了有限的成功,但在调整线的稳态形状方面很有用。
对几种控制线的稳态形状和风梯度引起的振动的候选方案进行了研究。使用经典振动链开发了计算机模拟,将自由/固定边界条件叠加在线的稳态形状和张力分布上。分析中考虑了几种形式的恢复力和耗散力。证明了叠加方法在很宽的操作范围内的有效性。开发了一种控制律,它调节拖曳机轨道半径,并证明了所有振动减少 50% 或更好的潜力。研究了第二种方案,即在线的尾端使用可控减速伞。可控减速伞在减少振动方面取得了有限的成功,但在调整线的稳态形状方面很有用。
第 4 章 姿态控制 ..................................................................................................................................................................................39 4.1 姿态误差....................................................................................................................................................................................................41 4.1.1 四元数姿态误差....................................................................................................................................................................................41 4.1.2 解算倾斜扭转....................................................................................................................................................41 .................................................................................................................................................................................43 4.1.3 解析欧拉角....................................................................................................................................................................................49 4.1.4 姿态误差对比....................................................................................................................................................................................................61 4.2 姿态控制....................................................................................................................................................................................................................................61 62 4.2.1 PID . ... . ...
西密歇根大学 ScholarWorks 研究生院免费向您提供本硕士论文 - 开放获取版。西密歇根大学 ScholarWorks 授权管理员已接受本论文,将其纳入硕士论文。如需了解更多信息,请联系 wmu-scholarworks@wmich.edu 。