A.Bellakhdar a,b,* , A.Telia ba LMSF 半导体和功能材料实验室,Amar Telidji Laghouat 大学,阿尔及利亚 b Laboratoire des Microsystèmes et Instrumentation LMI, Département d'Electronique, Faculté de Technologie, Université des Frères Mentouri, 2 Campus Ahmed Hamani, Ain El Bey, Constantine, Algeria In本研究提出了具有不同 GaN 盖层厚度和重 n 掺杂 GaN 盖层的 GaN/AlInN/GaN 高电子迁移率晶体管 (HEMT)。为了研究 GaN 覆盖层对 (GaN/AlInN/GaN) 异质结构性能的影响,通过求解一维 (1 D) 泊松方程,提出了一种简单的 GaN/AlInN/GaN 高电子迁移率晶体管 (HEMT) 阈值电压分析模型,从而找到了二维电子气 (2DEG) 与控制电压之间的关系。分析中考虑了 AlInN/GaN 和 GaN/AlInN 界面处的自发极化和压电极化。我们的模拟表明,GaN 覆盖层降低了二维电子气 (2DEG) 的面密度,从而导致漏极电流减小,并且 n+ 掺杂的 GaN 覆盖层比未掺杂的 GaN 覆盖层具有更高的面密度。 (2021 年 11 月 28 日收到;2022 年 2 月 19 日接受)关键词:GaN 帽、GaN/AlInN/GaN HEMT、2DEG、2DHG、自发极化、压电极化
这项研究使用Silvaco-Atlas软件背对背设计和模拟了CIGS/CIGS。我们认为CIGS吸收层厚度和子细胞是关键参数,以优化CIGS/CIGS串联太阳能电池的性能。该研究比较研究了不同电极金属的影响,例如钼,铝,钛和银对效率。最佳CIGS/CIGS串联太阳能电池配置的电参数为15.65 mA/cm²的短路电流密度(JSC),开路电压(VOC)为1.86 V,填充因子(FF),86.04%的填充因子(FF),为86.04%,转化效率(η)为27.112%。与获得最大转化效率相对应的顶部和底部细胞的最佳吸收层厚度分别为0.17和6.3μm。相反,CDS层的最佳厚度为0.04 µm。银在几种金属之间连接层方面的性能最佳。结果可用于开发低成本和高效率太阳能电池。
聚酰胺是3D打印中的材料之一,可以生产有价值的产品以满足行业的需求。先前的研究证明,3D印刷材料的层厚度以及温度的升高会影响机械和物理特性。但是,只有少数研究涉及聚酰胺材料作为测试材料,尤其是在分析印刷材料层厚度的影响以及温度对聚酰胺机械和物理性能的升高时。因此,将在室温下,在不同温度下,75°C和110°C下在0.1 mm,0.2 mm和0.3 mm处具有不同层厚度的聚酰胺的弯曲特性。本研究将使用融合沉积建模(FDM)过程在三个不同的高度上打印的聚酰胺(PA)材料。在不同温度从27°C到110°C的不同温度下进行弯曲和拉伸测试。研究结果表明,0.3 mM的层高度以11.05 MPa的平均速率表现出最高的弯曲强度,而0.1 mm(6.7 MPa)和0.2 mm(9.6 MPa)表现出最高的弯曲强度。与75°C(1.6mpa)和27°C(2.1MPA)的温度相比,温度升高时的拉伸强度会降低,使温度为110°C最低拉伸值(1.591 MPa)。已经进行了几种材料特征,例如SEM,TGA,DMA,DSC和密度,以研究拉伸测试温度对聚酰胺机械性能的微观结构和影响。
理解和优化光活性二维 (2D) 范德华固体的特性对于开发光电子应用至关重要。在这里,我们详细研究了 InSe 基场效应晶体管 (FET) 的层相关光电导行为。使用 λ = 658 nm (1.88 eV) 的连续激光源在 22.8 nW < P < 1.29 μW 的很宽照明功率范围内研究了具有五种不同通道厚度(t,20 nm < t < 100 nm)的 InSe 基 FET。所研究的所有器件都显示出光电门控的特征,然而,我们的研究表明光响应度在很大程度上取决于导电通道的厚度。场效应迁移率 (μ FE ) 值(作为通道厚度 t 的函数)和光响应度 (R) 之间的相关性表明,通常 R 随着 μ FE 的增加(t 降低)而增加,反之亦然。当 t = 20 nm 和 t = 100 nm 时,器件的最大响应度分别为 ~ 7.84 A/W 和 ~ 0.59 A/W。在施加栅极电压的情况下,这些值可能会大幅增加。本文介绍的基于结构-性能相关性的研究表明,可以调整 InSe 基光场效应晶体管的光学性能,以用于与太阳能电池中的光电探测器和/或有源层相关的各种应用。
摘要:二硫化钼(MoS 2 )因其较大的带隙、良好的机械韧性和稳定的物理性能而受到研究者的广泛关注,成为下一代光电器件的理想材料。但较大的肖特基势垒高度( Φ B )和接触电阻是阻碍大功率 MoS 2 晶体管制备的障碍。详细研究了具有两种不同接触结构的 MoS 2 晶体管的电子传输特性,包括铜(Cu)金属-MoS 2 通道和铜(Cu)金属-TiO 2 -MoS 2 通道。通过调整金属和 MoS 2 之间的 TiO 2 夹层的厚度来优化接触。具有 1.5 nm 厚 TiO 2 层的金属-夹层-半导体(MIS)结构具有较小的肖特基势垒,为 22 meV。结果为设计 MIS 接触和界面以改善晶体管特性提供了参考。
摘要:这项研究的目的是使用反射率光谱计算WSE 2层厚度,并使用Nemess 2D材料反射光谱使用NanoHub.org进行与石墨烯进行比较,该研究的数据被收集了。根据ClinicalCalc.com,将样品分为WSE2层的(n = 20),石墨烯层(n = 20)。在保持以下值的同时计算了总样本量:alpha误差阈值= 0.05,入学率= 0.1,95%置信区间= 80%,而G-power = 80%。使用SPSS软件通过独立样本测试进行比较。与石墨烯层(2.0669)相比,WSE 2层和石墨烯层的厚度具有统计学上的显着差异。WSE2层(3.4717)显示出更好的结果。与石墨烯层相比,WSE 2层具有更大的厚度。
图 3 森林图显示视网膜层与平均扩散率之间的关联。框代表系数,水平线代表 95% 置信区间(未校正)。视乳头周围 RNFL(蓝色)。GC-IPL(红色)。GCC(绿色)。根据性别、年龄、眼轴长度、脉压、体重指数、吸烟状况和颅内总容量调整的多元线性回归模型。负 β 系数对应于平均扩散率的降低和 WM 微结构完整性的改善,视网膜亚层厚度每增加一个标准差。FDR,错误发现率。*对数转换结果:出于演示原因,系数和置信区间的比例有所变化。区域中的二分视网膜层:小脑中脚、小脑下脚的 ppRNFL;穹窿脊或终纹的 ppRNFL 和 GCC。
越来越多的证据表明,在没有临床可检测到的DR的糖尿病眼中发生明显的视网膜稀疏。 1,8,9这表明糖尿病性视网膜神经退行性变性(DRN)可能在糖尿病患者中DR的微血管变化之前。然而,对于是否进行糖尿病的诊断知之甚少。我们假设在正常范围内或未诊断糖尿病的个体中,较高的HBA1C水平与视网膜厚度较低有关。与糖尿病患者的糖化血红蛋白(HBA1C)水平(HBA1C)水平和视网膜层厚度之间的关联不同,我们研究了使用UK Biobank数据资源以及比较糖尿病和非糖尿病参与者的HBA1C和视网膜层厚度之间的关系。 据我们所知,这是第一项研究一般社区非糖尿病参与者之间这种关系的研究。 我们还研究了糖尿病状态与视网膜层厚度之间的关联。我们研究了使用UK Biobank数据资源以及比较糖尿病和非糖尿病参与者的HBA1C和视网膜层厚度之间的关系。据我们所知,这是第一项研究一般社区非糖尿病参与者之间这种关系的研究。 我们还研究了糖尿病状态与视网膜层厚度之间的关联。据我们所知,这是第一项研究一般社区非糖尿病参与者之间这种关系的研究。我们还研究了糖尿病状态与视网膜层厚度之间的关联。
甲基铵碘化锡( )钙钛矿纳米晶体由于其带隙窄、可见光吸收系数高、比铅基对应物( )更环保,引起了研究兴趣,并成为光伏领域的后起之秀。本文提出了一种以氧化锌(ZnO)和氧化铜(CuO)为电子传输介质(ETM)和空穴传输介质(HTM)的锡基钙钛矿太阳能电池,并使用太阳能电池电容模拟器(SCAPS)工具进行数值研究。在适当的参数下,初步模拟获得了短路电流密度(Jsc)为 27.56 / 、开路电压(Voc)为 0.82 、填充因子(FF)为 59.32 % 和功率转换效率(PCE)为 13.41 %。通过改变吸收层和电子传输层的厚度,观察到ZnO和ZnO的最佳厚度分别为0.6和0.3,相应的PCE分别为14.36%和13.42%。使用优化参数进行模拟后,记录到Jsc为29.71 /,Voc为0.83,FF为61.23%,PCE为15.10%。这些值优于未经优化获得的值,这意味着通过调整钙钛矿和电子传输层可以在一定程度上提高太阳能电池的性能,同时钙钛矿太阳能电池(PSC)是一种具有相当高效率的潜在环保太阳能电池。
图3给出了不同AlN间隔层厚度下二维电子气密度的变化。间隔层厚度越高,片状电荷密度(ns)越好,在0.5nm~2nm之间与AlN间隔层厚度几乎呈线性关系。电子密度的增加是由于压电和自发极化的影响。由于明显的极化效应,AlN间隔层可能引起偶极散射增加,结果二维电子气迁移率下降。在此临界厚度以下,间隔层增强了导带位移,有效降低了波函数对AlN势垒的穿透,从而降低了合金无序扩散的影响。电子片密度为1.81×1013cm-2,与[15]中计算的1nm AlN层电子片密度大致相同。