印度曼迪理工学院,2023 年 2 月 21 日:印度曼迪理工学院的研究人员开发了一种使用人工智能和机器学习 (AI&ML) 的新算法,可以提高自然灾害预测的准确性。该算法由印度曼迪理工学院土木与环境工程学院副教授 Dericks Praise Shukla 博士和印度曼迪理工学院前研究学者、目前在特拉维夫大学 (以色列) 工作的 Sharad Kumar Gupta 博士开发,可以解决滑坡敏感性测绘数据不平衡的挑战,该测绘表示特定区域发生滑坡的可能性。他们的研究成果最近发表在《滑坡》杂志上。
分析了智利中部安第斯山脉南部(32 – 34.5 S)上新世至近期大型(N 0.1 平方公里)岩崩的分布和年龄,以确定岩崩触发机制及其对区域景观演变的影响。大多数岩崩发生在西部主科迪勒拉山脉,并沿着主要地质构造聚集。变异分析显示岩崩、地质构造和浅层地震之间存在空间相关性。使用现有的 14 C 和 40 Ar/ 39 Ar 日期以及选定岩崩的新宇宙成因核素暴露年龄校准了相对年代序列。使用岩崩区域分布的经验关系估计了岩崩引起的沉积物产量。在整个第四纪,岩石滑坡将沉积物输送到溪流中,其速率相当于 0.10± 0.06 mm a − 1 的剥蚀速率,而使用短期(20 年)地震记录的估计值为 0.3 − 0.2 +0.6 mm a − 1 。沉积物转移的估计值和岩石滑坡的空间分布反映了一种地貌,其中构造和地质对剥蚀的控制比气候更为重要。© 2008 Elsevier B.V. 保留所有权利。
摘要:山体滑坡是一种自然灾害,在世界范围内造成广泛的环境、基础设施和社会经济损失。由于难以识别,因此必须评估创新方法来检测预警信号并评估其敏感性、危害和风险。机载激光扫描数据的日益普及为现代山体滑坡测绘技术提供了机会,可以分析大片地形上的山体滑坡、山体滑坡易发区和山体滑坡疤痕区的地形特征模式。在本研究中,在华盛顿州的卡利昂海滩半岛测试了一种基于多个特征提取器和无监督分类的方法,特别是 k 均值聚类和高斯混合模型 (GMM),以绘制滑坡和非滑坡地形。与独立编制的详细滑坡清单图相比,无监督方法正确分类了研究区域内多达 87% 的地形。这些结果表明:(1) 可以使用数字高程模型 (DEM) 和无监督分类模型来识别与过去深层滑坡相关的滑坡痕迹;(2) 特征提取器允许对特定地形特征进行单独分析;(3) 可以使用多个聚类对每个地形特征进行无监督分类;(4) 将记录的滑坡多发区与算法绘制的区域进行比较,表明算法分类可以准确识别发生深层滑坡的区域。本研究的结论可以总结为:无监督分类制图方法和机载激光雷达 (LiDAR) 得出的 DEM 可以提供重要的表面信息,可用作数字地形分析的有效工具,以支持滑坡检测。
摘要。山体滑坡是巴西经常发生的现象,造成了许多社会经济损失和人员伤亡。为了监测山体滑坡,土地利用和土地覆盖 (LULC) 以及山体滑坡清单图对于识别高易发区域至关重要。从这个意义上讲,本研究的主要目的是通过半自动方法,使用遥感时间序列图像的数据挖掘技术,对以山体滑坡检测为重点的 LULC 进行分类。为此,从 Sentinel-2 图像中提取了不同的指数,例如归一化差异植被指数、归一化差异建筑指数 (NDBI) 和土壤调整植被指数。从时间序列中提取了基本、极坐标和分形指标。从航天飞机雷达地形任务数字高程模型中提取了六个地貌特征。然后,使用四种不同方法的随机森林进行分类:单时间、双时间、度量和全部。在每种方法中,NDBI 指数或从中得出的度量都具有最高重要性,而斜率则排在前六个预测因子之中。全部方法显示出最高的总体准确率 (OA) (88.96%),其次是度量 (87.90%)、双时间 (82.59%) 和单时间 (74.95%)。简而言之,度量方法呈现出最有益的结果,呈现出高 OA 和低水平的犯错和遗漏错误。© 作者。由 SPIE 根据知识共享署名 4.0 国际许可发布。分发或复制本作品的全部或部分内容需要完全注明原始出版物,包括其 DOI。[DOI:10.1117/1.JRS.16.034518]
地震、山体滑坡和洪水等自然灾害的易发性也威胁着土耳其的可持续发展。在这些灾害中,地震造成的生命和经济损失最多,自 1900 年以来共发生 76 次地震,造成约 90,000 人死亡,受灾人口总数达 700 万,直接损失超过 250 亿美元 1 。大约一半的人员伤亡是由于 1939 年和 1999 年北安纳托利亚断层发生的两次地震造成的。1999 年的马尔马拉地震波及了土耳其马尔马拉地区的 10 个城市 2 ,而该地区的国民生产总值占土耳其总产值的近 35%,死亡人数超过 18,000 人,直接经济影响估计为 50 亿美元(占国民生产总值的 2.5%)。虽然洪水和山体滑坡的灾难性较小,但洪水和山体滑坡在土耳其却很常见,并造成局部损失。观察到的和预期的气候变化影响,例如更强烈的降水、极端高温和海平面上升,预计将导致自然灾害风险增加,包括河流三角洲和沿海城市低洼地区更频繁、更严重的洪水以及其他极端天气事件,如风暴、冰雹和龙卷风。3
b. 地震荷载的设计和评估必须考虑特定于项目特征的风险评估、地震分析和评估。所需的工作量可能因地下条件、施工和运营细节而有很大差异。范围必须考虑与地震相关的地面运动和其他地震灾害特征。这些地面运动和其他地震灾害特征包括断层破裂、地震强烈震动、地震引起的山体滑坡、液化、周期性软化和地震震积等情况。地震灾害和性能评估将包括地质条件、场地特征、结构或路堤条件、结构响应、功能性(地震后可操作性)和其他可能因地震而加剧的现有静态潜在危险(如山体滑坡和后向侵蚀管道)。包括基于项目特征类型的地震或地震地面运动和相关性能水平
飓风、龙卷风、暴风雨、洪水、风涌、海啸、地震、火山爆发、山体滑坡、泥石流、暴风雪或干旱),或无论原因如何,在美国任何地区发生火灾、水灾或爆炸,经总统认定造成足够严重的损害
GMS700 传感器没有活动部件,能够在极端气候条件下提供全天候自动监测数据,是监测斜坡和建筑物(如露天矿、水坝、山体滑坡和其他自然灾害)的理想选择。
土地使用................................................................................................................................5-3 公园、开放空间和娱乐场所....................................................................................................5-3 公共设施和服务...................................................................................................................5-3 交通...................................................................................................................................5-4 地震、土壤和山体滑坡灾害.......................................................................................................5-4 水文、洪水和水资源....................................................................................................5-4 空气质量................................................................................................................................5-4 文化资源................................................................................................................................5-5 视觉质量................................................................................................................................5-5