美国陆军工程兵团和 TWI 将负责现场数据收集。美国陆军工程兵团于 2019 年秋季开始收集沉积物和流体动力学数据。系统流体动力学、沉积物特性和流动性将用于项目选择和设计,以及对沉积物放置效果进行建模。TWI 一直在潜在放置地点收集鸟类场地使用数据。数据将用于告知基线条件和初步设计,制定力求模仿自然过程的放置策略,与资源机构协调,并在 2021 年初之前建造多个放置点。所有活动期间都将收集监测数据。我们将评估适应性管理策略并告知政策,以有利于该地区的长期可持续实践和沿海复原力。美国陆军工程兵团、新泽西州和湿地研究所作为 SMIIL 的主要合作伙伴,将经常协调并向更大的工作组通报进展、结果和未来计划。SMIIL 活动的更新也将定期在美国陆军工程兵团和合作伙伴网站上分享。
Quick-Lock Grid Systems CE根据欧洲统一的标准EN13964:2014标记。CE标记的建筑产品涵盖了绩效声明(DOP),该声明使客户和用户可以轻松比较欧洲市场上可用的产品的性能。
Quick-Lock Grid Systems CE根据欧洲统一的标准EN13964:2014标记。CE标记的建筑产品涵盖了绩效声明(DOP),该声明使客户和用户可以轻松比较欧洲市场上可用的产品的性能。
Quick-Lock Grid Systems CE根据欧洲统一的标准EN13964:2014标记。CE标记的建筑产品涵盖了绩效声明(DOP),该声明使客户和用户可以轻松比较欧洲市场上可用的产品的性能。
摘要 对疼痛的共情涉及共同的情感反应和自我与他人的区分。在本研究中,我们探讨了一个备受争议的问题:之前与情感共享相关的神经反应是否可能来自对突出的情感表现的感知。此外,我们研究了涉及情感共享和自我与他人区分的大脑网络如何支撑我们对被认为是真实或假装的疼痛的反应(而事实上,两者都是出于实验控制的原因而表现出来的)。我们发现,在观看真实和假装的疼痛面部表情视频片段的参与者中,与情感共享(前岛叶 [aIns] 和前中扣带皮层)以及情感自我与他人区分(右上缘回 [rSMG])相关的区域激活程度更强。然后,我们使用动态因果模型评估了这两种情况下右侧 aIns 和 rSMG 之间的神经动态。这揭示了与假装疼痛相比,真实疼痛对 aIns 到 rSMG 连接的抑制作用降低。仅对于真正的疼痛,大脑到行为的回归分析强调了这种抑制效应与疼痛评级以及共情特征之间的联系。这些发现意味着,如果别人的痛苦是真实的,因此需要适当的共情反应,大脑中的神经反应确实似乎与情感分享有关,并且自我与他人的区分会发挥作用,以避免共情过度唤醒。相反,如果其他人只是假装痛苦,他们痛苦表情的感知显着性会导致神经反应下调,以避免不适当的情感分享和社会支持。
大脑区域 1:大脑 - 大脑叶皮质及其功能(额叶、顶叶、颞叶、枕叶和岛叶) - 大脑对身体运动和感觉知觉的划分(中央前回和中央后回)。 - 大脑与语言(布罗卡区和韦尼克区以及失语症 - 大脑与睡眠 - 大脑与记忆 - 大脑核与运动功能 - 大脑核与情绪(边缘系统)
摘要。我们描述了一个贝叶斯控制器的贝叶斯控制器,这是控制理论中众所周知的基准。卡车孔系统的特征是其非线性和不足的性质,我们通过(1)假设控制器缺乏传感器噪声方差的知识,并且(2)在控制信号上施加界限。传统的控制算法通常难以适应不确定性和约束。然而,贝叶斯框架,尤其是专用推理框架,可以顺利地适应这些复杂性。在拟议的控制器中,整个计算过程由在线贝叶斯推理组成。通过工具箱简化了此过程,以在因子图中快速传递基于消息传递的推断。我们描述了在因子图中传递消息的机制,解决了诸如非线性因素,有限控制和实时参数跟踪之类的挑战。本文的主要目的是证明,随着主动推理框架的发展和自动推理工具箱的效率,贝叶斯控制成为应用程序工程师的吸引人选择。
摘要这项研究调查了机器学习技术在检测油棕叶中疾病的应用,并利用来自Tanah Laut地区种植园的1,119张图像的数据集。数据集包含488例患病和631个健康的叶片样品,这些样品经过精心裁剪以隔离叶片区域,并在域专家的帮助下标记。用于特征提取,同时考虑了实验室和RGB颜色空间,以及Haralick纹理特征,每个像素总共有11个功能。采用了尺寸和选择相关特征,应用主成分分析(PCA)和随机森林方法。随后使用支持向量机(SVM)进行叶片健康状况的分类,并使用准确性,精度,召回和F1得分指标评估模型性能,这些均来自混淆矩阵。研究发现,PCA和随机森林显着提高了模型性能,从而提高了区分健康和患病叶片的能力。这些发现为在油棕种植园中开发自动疾病检测系统的发展提供了宝贵的见解,并在精确农业中使用了潜在的应用。此外,结果提出了进一步研究植物疾病诊断的途径,强调了先进的机器学习技术在增强作物管理和支持可持续农业实践中的作用。