此外,人工智能还用于核工业,以增强自动化、进行燃料补给和维护规划、培训核人员进行正常和异常操作、进行在役检查、裂纹和缺陷的评估和表征、用于反应堆设计、安全、保障、实时风险评估、长期运行/寿命应用、加强工作场所安全以及基于计算机模拟的在线剂量测定。然而,人工智能的变革力量也带来了挑战,包括透明度、信任和安全问题以及其他道德问题。
• 定义核能人工智能 • 核能人工智能是指应用人工智能技术和算法来增强、优化和简化核技术的各个方面。 • 这包括核反应堆运行、辐射探测、核材料分析、废物管理,甚至控制核聚变等领域。 • 通过利用人工智能的模式识别、复杂数据分析和决策能力,核能人工智能旨在通过提高效率、安全性和可持续性来彻底改变核工业。
多伦多 Sunrise Propane 工厂最近发生的大爆炸和火灾,充分表明了当该行业缺乏有效的安全文化时,将对公共安全以及整个行业造成广泛影响。此次事件引发了关于自我监管是否能有效保护公众的争论,并凸显出一些丙烷公司明显缺乏安全意识,忽视了他们所管理的危险。据技术标准和安全局称,Sunrise 工厂之前发生过两次安全违规行为,一次是 2006 年所谓的“卡车到卡车”转运。TSSA 在一份新闻稿中表示,爆炸发生前不久还发生了另一次“卡车到卡车”转运(这可能是爆炸的原因)。在后续审计中,TSSA 发现其他丙烷公司也存在其他安全违规行为,并暂停了六家主要工厂的执照,等待其提供培训和认证证明。后来,TSSA 以“缺乏安全文化”为由吊销了三家 Sunrise Propane 工厂的执照。五年前,在新泽西州牛顿,Able Energy 也发生了类似的爆炸和火灾,起因是非法的卡车对卡车丙烷转运。据美国职业安全与健康管理局称,Able Energy 曾因非法的卡车对卡车转运和其他几项安全违规行为(包括开车时仍连接着转运软管)而被处以多次罚款。这是 Able 的一种常见且明显隐蔽的做法,因为它节省了将油罐车开到更远的获得适当许可的丙烷转运设施的时间。在
在国家研究通用 (NRU) 反应堆的一次定期维护停机期间,检查人员发现,在一次罕见但严重的地震后,保持反应堆冷却泵运行所需的紧急备用系统未能运行。事实上,该系统自安装以来就没有运行过,这违反了加拿大核安全委员会 (CNSC) 于 2005 年续签的 NRU 运行许可证。AECL 完全控制 NRU 运行的各个方面,因此,AECL 不应承担责任。然而,问题并不在于指责,而在于关注点。当一座满足 4% 电力需求的动力反应堆关闭时,运营组织就会损失收入。损失的只是钱。当满足全球 70% 医用同位素需求的 NRU 关闭时,损失的不仅仅是钱。每月约有 16 万名患者需要使用医用同位素进行治疗。尤其是钼-99的半衰期只有66小时,需要每天生产和分发。它不是可以储存的药物。如果NRU停工超过一周,人们就会受苦。CNSC正在关注一个安全问题。问题是,一场严重的地震可能会释放一些放射性气体,从而对反应堆造成潜在的损害。在NRU现场发生这种破坏性地震的可能性是1
请注意,解析器函数将当前对象作为第一个参数。对于根部查询类型上的字段通常不使用,但是在执行查询时也可以定义根对象。作为第二个参数,他们获得了一个包含执行信息的对象,如GraphQlresolveInfo类所定义。此对象还具有上下文属性,该属性可用于为每个解析器提供上下文信息,例如当前登录的用户或数据库会话。在我们的简单示例中,我们不验证用户并使用静态数据而不是数据库,因此我们在这里不使用它。除了这两个参数外,解决方案函数还可以使用相同的名称获取模式中的字段定义(名称未从GraphQl命名约定转换为Python命名约定)。
已经表明,单甲基化的帽结构在核事件中起着重要作用。盖结构与增强前mRNA剪接有关。最近,还建议这种结构促进RNA从细胞核到细胞质的转运。我们先前已经从HELA细胞核提取物中鉴定出并纯化了8OKD核盖结合蛋白(NCBP),这可能会介导这些核活性。在本报告中,我们描述了编码NCBP的互补DNA(cDNA)的克隆。确定了NCBP的部分蛋白质序列,并从HELA cDNA文库中分离出NCBP的全长cDNA。该cDNA编码了790个氨基酸的开放阅读框,其计算的分子质量为91,734 daltons,其中包含大多数确定的蛋白质序列。但是,蛋白质序列与任何已知蛋白质都没有显着同源性。转染实验表明,在HELA细胞中瞬时表达的表位标记的NCBP仅在核质中定位。使用截短的NCBP cDNA进行的类似实验表明,这种核定位活性由N末端70氨基酸区域赋予。
长期以来,核武器被认为对国际政治格局具有政治和军事影响。这一观察在国际政治学、国际关系和安全政策学科中尤为突出,这些学科从核威慑、核扩散、核军备控制、核裁军和核安全等各个角度进行了一系列研究。特别是鉴于与核武器有关的全球发展,近年来对所谓“核时代”的研究逐渐增多。其背后,是美苏核对峙的冷战时代结束,核军控与裁军初见成效,进入“核遗忘”时代,之后又出现新的核扩散与核恐怖主义威胁,国际政治中“核武器的长影”再度浮现,最终进入“核武器复活”的大国竞争加剧时代。如今,随着俄罗斯入侵乌克兰,核威胁和武力改变现状的企图被公开讨论,芬兰、瑞典加入早已成为“核同盟”的北大西洋公约组织(NATO),对核威慑的新期待和担忧也日益增加。同时,东北亚地区既有拥核国家,也有事实上的拥核大国,透明度问题严重,中国预计2030年代将大幅增加核弹头数量,形成“三大核超级大国”,朝鲜违反联合国安理会决议发展核武器,持续进行军事挑衅。在围绕核武器的国际政治安全形势发生重大变化的背景下,如何应对核问题成为各国关注的焦点。