光生电荷产生范围很宽且可调,[4] 而且载流子迁移率高,扩散长度可达几微米。[5–7] 在任何光收集装置中,合适的接触对于有效收集光生电荷并将其输送到外部电路都至关重要。接触负责提供内在不对称性,以产生提取光生载流子的驱动力;[8] 这种内在不对称性可以通过动力学选择性(扩散控制)或电极之间的能量失配(漂移控制)来建立。一般的薄膜太阳能电池由活性层、夹在空穴提取阳极接触和电子提取阴极接触之间组成。在光照下,活性层内产生的电荷载流子将漂移扩散到接触处,并通过内在不对称性被提取,从而产生净光电流。有机太阳能电池的特点是载流子迁移率低、扩散长度短,因此需要在活性层上建立强大的内建电场以提高电荷提取率并避免复合。[9–11] 该电场由内建电位V bi (或接触电位) 引起,该电位源于阳极和阴极之间的功函数差异,由于有机半导体的介电常数相对较低,因此基本上不受屏蔽。相反,在钙钛矿太阳能电池中,载流子扩散长度为几微米,在没有电场的情况下,光生电荷应该能够毫不费力地穿过 200–500 纳米的活性层而不会复合。因此,只要能确保接触处的动力学选择性[12],电荷收集预计将由扩散控制[8,13],人们正在沿着这个思路达成共识。通过在电极和活性层之间采用单独的电荷传输层 (CTL) 来实现动力学选择性,从而形成 n–i–p 或 p–i–n 型器件架构,其中阳极处为空穴传输层 (HTL,p 层),阴极处为电子传输层 (ETL,n 层)。在理想情况下,这些层能够传导多数载流子,同时防止少数载流子的提取,从而为扩散驱动的电荷收集创建优先方向。在这种电荷提取要求的框架内,对于内置电位的确切作用以及负责电荷提取的驱动力的确切性质仍然存在一些猜测。
©2022 Wiley -VCH GMBH。保留所有权利。本文只能下载供个人使用。任何其他用途都需要事先获得版权持有人的许可。记录的版本可在线网上在http://doi.org/10.1002/adma.202109157获得。
Technical Parameter 额定功率/Power : 100W 额定电压/Voltage : 220V/50Hz 防水等级/Waterproof : IPX4 机身材质/Material : 岩板/Sintered Stone
Ekati 矿于 1998 年正式投产,经过自 1981 年以来广泛的勘探和开发工作,成为加拿大第一座钻石矿。Ekati 分为核心区和缓冲区,核心区包含目前运营的大部分矿山和其他获准开采的金伯利岩管,缓冲区是相邻的区域,包含之前开采的金伯利岩管。Ekati 目前由 Arcti c Canadian Diamond Company Ltd.(88.9% 核心区/65.3% 缓冲区)和 Stewart Blusson(11.1% 核心区/34.7% 缓冲区)所有。核心区和缓冲区都是新开发的重点。由于新冠疫情,该矿在 2020 年的大部分时间都处于维护状态。 Ekati 的前所有者 Dominion Diamond Mines 随后于 2020 年寻求债权人保护。该公司将资产出售给 Arcti c Canadian Diamond Company,并于 2021 年 1 月恢复采矿作业。预计该矿到 2021 年底将产出 400 万克拉钻石。
图 3. ML 方法对钙钛矿与非钙钛矿进行分类。a. 根据数据集中 XRD 模式范围(2 )的 CNN 预测准确度,b. 根据数据集中 XRD 模式范围(2 )的 CNN 混淆矩阵真阴性,c. 根据数据集中 XRD 模式范围(2 )的 CNN 混淆矩阵假阳性,d. 根据数据集中 XRD 模式范围(2 )的 CNN 混淆矩阵假阴性,e. 根据数据集中 XRD 模式范围(2 )的 CNN 混淆矩阵真阳性,f. XRD 模式(d 间距(Å))对于随机森林分类的特征重要性(步长:2.18°(2 ))。
钙钛矿结构 [1] 及其几乎无限适应性的衍生物阵列,必须算作材料科学中最重要的结构之一,其基本的 ABX 3(A = 大阳离子;B = 较小的阳离子;X = 阴离子)结构原型有助于铁电、[2] 压电、[3] 超导、[4] 光化学 [5] 和许多其他重要的技术特性。近来,随着混合 [3,6–8] 或全无机卤化物钙钛矿 ABX [9,10] 结构制造技术的快速发展,人们对钙钛矿的兴趣进一步增加。其中 A 是有机或碱金属反离子,B 通常是铅或锡,X 是卤素,这使得具有光学和光伏特性的材料 [11,12] 可用于太阳能电池、[13,14] 离子导电材料、[15] 超级电容器 [16] 和其他储能设备 [17]。然而,块状卤化物钙钛矿具有反应性,容易发生表面水合 [18] 相变 [19,20] 和高缺陷密度 [21],从而降低了其性能和寿命。因此,人们开发出了降维卤化物钙钛矿,重点关注胶体、[22] 二维、[23] 量子点、[24] 以及薄膜中的分子级 [25] 制备。虽然在如此低的维度上形成钙钛矿可以增强一些理想的特性,但也会增加其降解的趋势,尽管表面钝化可以减少薄膜中的分解。[26] 尽管如此,维度在纳米尺度上仍然是设计和微调卤化物钙钛矿物理性质的关键,因为它在决定电子结构方面起着关键作用。[27]
使用概率空间数据分析与集成,开发了布比绿岩带太古代矿脉金矿潜力预测模型。所用数据集包括金矿床记录、地质图、构造图、航磁和 ASTER 图像。从地理勘探数据集中提取了指示太古代矿脉金矿潜力的地质特征,用作基于太古代矿脉金矿概念模型的预测模型的输入。指示性地质特征包括岩性单元、与花岗岩-绿岩接触的接近度、剪切和变形区、叶理和 s 结构、褶皱轴、热液蚀变带和航磁线纹(矿化流体的通道)。使用 Crosta 技术从 ASTER 数据中提取了与金矿化相关的热液蚀变带。同晚期构造花岗岩侵入体提供了热量和/或热液,导致金矿化,而其余结构则作为金矿的沉积地点。已知的金矿床与地质特征具有空间关联。对金矿床与不同地质特征之间的空间关联进行了定量分析。研究区共有 201 个金矿床。147 个小型矿床用于预测建模,而 51 个大型矿床用于模型验证。输入地图是
1:25 PM高度低级斑岩铜矿床J. Perello;必和必拓Billiton矿物质,加利福尼亚州旧金山,加利福尼亚州,不可避免地耗尽来自斑岩铜矿石的浅层高级超基因铜矿,未来的大规模生产必须来自更深层次的高质量。 在斑岩铜沉积物中的降压铜矿化(通常被视为低级)在大型系统中可能有很大差异(<0.3 –> 2%CU),其中有些人在某些情况下具有异常高级(> 3%CU)的成分。 以下特征被确定为有利于大型(> 100亿吨),高级(> 1%Cu)矿化的大型(> 1%CU)矿化的特征:强烈的石英 - 韦恩特库托工厂;岩浆水热角球;近端Skarns;碳酸盐替代体;伸缩沉积物中的vuggy残留石英或静脉系统;存在岩性屏障和反应性镁铁质宿主岩石。 在探索程序中考虑这些功能可以帮助最大程度地提高发现高级低级斑岩铜铜的机会。1:25 PM高度低级斑岩铜矿床J. Perello;必和必拓Billiton矿物质,加利福尼亚州旧金山,加利福尼亚州,不可避免地耗尽来自斑岩铜矿石的浅层高级超基因铜矿,未来的大规模生产必须来自更深层次的高质量。在斑岩铜沉积物中的降压铜矿化(通常被视为低级)在大型系统中可能有很大差异(<0.3 –> 2%CU),其中有些人在某些情况下具有异常高级(> 3%CU)的成分。以下特征被确定为有利于大型(> 100亿吨),高级(> 1%Cu)矿化的大型(> 1%CU)矿化的特征:强烈的石英 - 韦恩特库托工厂;岩浆水热角球;近端Skarns;碳酸盐替代体;伸缩沉积物中的vuggy残留石英或静脉系统;存在岩性屏障和反应性镁铁质宿主岩石。在探索程序中考虑这些功能可以帮助最大程度地提高发现高级低级斑岩铜铜的机会。