摘要 — 本文提出了一种高效宽带毫米波 (mm-Wave) 集成功率放大器 (PA),该放大器采用了基于低损耗槽线的功率组合技术。所提出的基于槽线的功率合成器由接地共面波导 (GCPW) 到槽线的过渡和折叠槽组成,可同时实现功率合成和阻抗匹配。该技术提供了一种宽带并联-串联合成方法,可增强毫米波频率下 PA 的输出功率,同时保持紧凑的面积和高效率。作为概念验证,我们在 130 nm SiGe BiCMOS 后端 (BEOL) 工艺中实现了紧凑的四合一混合功率合成器,从而使芯片面积小至 126 µ m × 240 µ m,测量的插入损耗低至 0.5 dB。3 dB 带宽超过 80 GHz,覆盖整个 G 波段 (140-220 GHz)。基于此结构,采用 130 nm SiGe BiCMOS 技术制作了高效毫米波 PA。三级 PA 实现了 30.7 dB 的峰值功率增益、40 GHz 的 3 dB 小信号增益带宽(从 142 GHz 到 182 GHz)、测量的最大饱和输出功率为 18.1 dBm,峰值功率附加效率 (PAE) 在 161 GHz 下为 12.4%。极其紧凑的功率合成方法使核心面积小至 488 µ m × 214 µ m,单位芯片面积的输出功率为 662 mW/mm 2 。
摘要 — 本文介绍了一种毫米波多模式雷达发射机 IC 的架构,该架构支持三种主要雷达波形:1) 连续波 (CW/FMCW);2) 脉冲;3) 相位调制连续波 (PMCW),全部来自单个前端。该 IC 采用 45 纳米 CMOS 绝缘硅片 (SOI) 工艺实现,可在 60 GHz 频段运行,集成了宽带三倍频器、两级前置放大器、两个功率混频器和混合信号基带波形生成电路。通过配置功率混频器和相关波形基带电路,可实现多种模式下的发射机雷达运行。这种方法的一个重要优势是,总信号带宽(雷达的一个关键性能指标)仅受脉冲生成中 RF 输出节点的限制。还提出了一种基于电流复用拓扑的新型宽带三倍频器设计技术,用于 LO 生成,输出分数带宽 > 59%。 CW 模式下完整 TX IC 的晶圆上测量结果显示,54 至 67 GHz 的平均输出功率为 12.8 dBm,峰值功率为 14.7 dBm,谐波抑制比 > 27 dB。脉冲模式下的测量显示可编程脉冲宽度为 20 至 140 ps,相当于 > 40 GHz 的雷达信号带宽。本例还演示了 PMCW 模式操作,使用 10 Gb/s PRBS 调制雷达信号。该 IC 功耗为 0.51 W,占用 2.3 × 0.85 mm2 的芯片面积(不包括焊盘)。
摘要:最近,混合储能系统(HESS)的吸引力在多个应用领域中一直在增长,例如充电站,电网服务和微电网。hesss由两个或多个单个单一存储系统(ESS)的集成,以结合每个ESS的好处并改善整体系统性能,例如效率和寿命。关于HESS的最新研究主要集中在电源管理和不同ESS之间的耦合,而对特定类型的ESS而没有特别兴趣。在过去的几十年中,氧化还原流量电池(RFB)由于其吸引人的功能而受到了显着关注,尤其是对于固定存储应用,并且杂交可以改善有关短期持续时间和峰值功率可用性的某些特征。本文介绍的是基于RFB的HESS的主要概念的全面概述。从简短的描述和针对与RFB混合杂交的常见电化学存储技术的关键性能指标(KPI)的规范开始,HESS是基于面向电池的和面向应用程序的KPI进行了分类的。此外,通过数值模拟提出并评估了包括RFB和SuperCapacitor(SC)组合的HESS的最佳耦合结构。最后,对能源管理系统(EMS)进行了深入研究。提供了EMS以及可能的应用程序场景的一般结构,以识别常用的控制和优化参数。因此,将面向系统和面向应用程序的参数的分化应用于文献数据。之后,讨论了最新的EMS优化技术。作为最佳EMS的特征是对系统的未来行为的预测以及合适的控制技术的使用,对先前实施的EMS预测算法和控制技术进行了详细分析。这项研究总结了RFB的电杂交的关键方面和挑战,因此对新需要的优化和控制算法给出了未来的观点。
产品特点和控制 低音炮 您的新型数字硬盘低音炮的突出特点包括: • 锥体和电机尺寸: - 10 英寸(8 英寸活塞直径)或 12 英寸(9.7 英寸活塞直径)锥体,带 310 盎司磁铁,或, - 15 英寸(12.7 英寸活塞直径)或 18 英寸(15.2 英寸活塞直径)锥体,带 380 盎司磁铁。磁铁 • 内置 1250 瓦 (RMS)、3,000 瓦峰值功率高效 D 类放大器 • 串联 3 英寸音圈 • 多层树脂层压锥体 • 高偏移橡胶环绕 • 增益压缩、防削波电路,可防止过度偏移和放大器削波 • 固定 80Hz 高通分频器(RCA 输出) • 平衡 (XLR) 输入 • 线路电平 (RCA) 输入和吞吐量 • 扬声器电平输入 • 可变音量控制 • 频率响应 20Hz - 120Hz +/-3dB • 可拆卸 6 英尺交流电源线 • 四个橡胶 1/4 --20 螺纹支撑脚(15 英寸和 18 英寸型号为带橡胶插件的铝制) • 屏幕控制: - 自动均衡器/自我均衡器 - 用于房间均衡器的图形或参数均衡器控制 - 可调(15Hz - 199Hz)低通分频器(可禁用) -多个交错低通分频器(6dB/倍频,初始到 36dB/倍频,最终) - 可调(15Hz - 35Hz)亚音速滤波器(可禁用) - 多个交错亚音速滤波器(12dB/倍频,初始到 24dB/倍频,最终) - 可变音量控制 - 可调相位控制(0° - 180°,以 15° 为增量) - 可选极性(+/-)
摘要:电动汽车(EV)的受欢迎程度在现代世界中日益增加。电网充电站的电动汽车充电会导致电网发生相当大的电力危机。现在认为可以将可再生能源资源(RESS)与电网中的常规能源整合在一起,以减少峰值功率需求和不可避免的排放效应。因此,本文提出了一种用于用两个Ress的EV充电的能量解决方案,即太阳能光伏(PV)和沼气。Homer软件用于分析太阳能PV和基于沼气的EV充电站的效力和功能。所提出的系统由太阳能光伏系统,两个沼气发动机发电机和带电池存储的双向转换器组成。在荷马软件中分析了不同成本的变化,例如不同太阳能PV系统(3 kW,4.5 kW,6 kW,6 kW和9 kW)的净现在成本(NPC),初始成本和能源成本(COE)。最终选择4.5 kW太阳能光伏系统作为NPC,初始成本和COE分别为$ 93,530,$ 19,735和0.181美元,这是有效的。该系统的寿命为25年,最初需要12年才能克服系统成本,其余13年将提供财务收益。该研究还说明了太阳辐照度,生物量以及能量管理系统负载的变化的影响。技术经济分析表明,所提出的方案可以是有效的能源解决方案。温室气体(GHG)的排放(GHG)大大减少。这项研究有望在具有技术经济和环境可行性的基于可再生能源的电动汽车充电系统中是有益的。
伦敦,2024年5月24日 - 对英国第一座城际电池列车的测试今天早些时候开始。电池的峰值功率超过700kW,现在已经成功地改造到了Transpennine Express“ Nova 1”火车上(五个carriage Intercity Intercity Class 802),今年夏天在Transpennine路线进行试验之前。这是英国第一次试验,柴油发动机被城际火车上的电池代替。审判是Transpennine Express,Angel Trains和Hitachi Rail之间的合作。单电池单元非常强大,每天存放足够的电力,可以为75座房屋供电。这种令人印象深刻的能量和功率密度将提供相同水平的高速加速度和性能,同时不比它所取代的柴油发动机重。电池的安装将减少排放并提高能源效率。预计,在日立的中心介绍火车上,将排放和燃料成本降低了30%。最重要的是,对于乘客而言,试验将测试中心列车如何进入,下车并将非电动车站放在零发射电池模式下,以提高空气质量并减少噪声污染。利用英格兰东北部已经开发的电池行业,该电池是用桑德兰的Turntide Technologies制造的。该试验将提供现实的证据,以通知业务案例100%击球的式城际火车,能够在电池模式下运行到100公里。它还将演示电池这个非凡的范围意味着可以部署该电池技术,以涵盖未来几年中城间路线的最终非电力段。
引言近几十年来,超快激光器已经迅速发展为更高的性能。超快激光器具有三个关键特征,可以使其在市场领域的应用:首先,它们的短脉冲持续时间允许在时间域中进行高分辨率测量。换句话说,它们是测量高速现象的几乎完美的超快“ flash”。第二,由于激光能集中在短脉冲中,因此它们具有很高的峰值功率,这可以实现关键的材料相互作用,最重要的是“冷消融”,短光学脉冲几乎可以去除或消融任何材料,而不会在样品处理的样品中产生明显的残留热量。此技术允许对当今使用的许多现有材料和薄膜进行非常精确的微加工。它也有可能在未来产品中使用。此外,它允许新型的生物医学和组织手术应用。第三,短时脉冲具有相应的光带宽,并且可以利用此功能来进行精确的测量诊断和计量学。在几篇评论文章1,2中给出了这些功能和许多其他应用的更详细概述,并且超出了本研究的范围。半导体可饱和吸收镜(SESAM)模式的激光器与1990年代3,4期间开发的二极管泵式固态激光器(DPSSL)相结合的简单性,导致了许多新的,实用的,实用的,实用的,可商购的超级武器激光系统。这些激光系统已在许多相关应用中广泛使用,这些应用程序正在更换昂贵,渴望,维护密集型激光器。最近廉价,更紧凑的半导体磁盘激光器(SDL)的发展可能会开放新市场,例如紧凑的测量设备。此结果最终将使超快速激光器能够访问高量消费市场,例如汽车工业中的光检测和范围(LIDAR)技术
摘要:最近,混合储能系统 (HESS) 在充电站、电网服务和微电网等多个应用领域的吸引力日益增长。HESS 由两个或多个单个储能系统 (ESS) 集成而成,以结合每个 ESS 的优势并提高整体系统性能,例如效率和使用寿命。最近对 HESS 的研究主要集中在不同 ESS 之间的电源管理和耦合上,而对特定类型的 ESS 没有特别的兴趣。在过去的几十年里,氧化还原液流电池 (RFB) 因其吸引人的特性而备受关注,尤其是在固定存储应用中,混合可以改善某些短期持续时间和峰值功率可用性特性。本文全面概述了基于 RFB 的 HESS 的主要概念。首先简要描述并指定适用于与 RFB 混合的常见电化学存储技术的关键性能指标 (KPI),然后根据面向电池和面向应用的 KPI 对 HESS 进行分类。此外,提出了一种由 RFB 和超级电容器 (SC) 组合而成的 HESS 最佳耦合架构,并通过数值模拟对其进行了评估。最后,对能源管理系统 (EMS) 进行了深入研究。提供了 EMS 的一般结构以及可能的应用场景,以确定常用的控制和优化参数。因此,将面向系统和面向应用的参数的区分应用于文献数据。之后,讨论了最先进的 EMS 优化技术。由于最佳 EMS 的特点是预测系统的未来行为并使用合适的控制技术,因此对以前实施的 EMS 预测算法和控制技术进行了详细分析。该研究总结了RFB电混合的关键方面和挑战,从而为管理系统新需要的优化和控制算法提供了未来前景。
分布式可再生能源 (RES) 的普及率不断提高,加上新型电动汽车 (EV) 型号注册数量不断增加,在零碳能源社区的发展中发挥着重要作用。然而,间歇性可再生能源发电厂的份额越来越大,再加上高且不受控制的电动汽车充电需求总量,要求能源区必须向新的规划和管理模式发展。因此,在这种背景下,本文提出了新颖的智能充电 (SC) 技术,旨在尽可能多地在当地整合 RES 发电和 EV 充电需求,协同作用于电力流并避免对电力系统产生不利影响。为了实现这一点,本文介绍了一种集中式充电管理系统 (CMS),该系统能够单独调节每个插电式电动汽车的充电功率。CMS 旨在最大限度地提高本地 RES 的充电自耗,从而拉平外部电网所需的峰值功率。此外,即使在低 RES 电力可用性条件下,CMS 也能保证所有车辆在出发时的整体充电状态 (SOC) 良好,且无需从电网获取额外能量。本文提出了两种根据 EV 功率流方向而不同的方法。第一种 SC 仅涉及单向功率流,而第二种方法还考虑车辆之间的双向功率流,以车对车 (V2V) 模式运行。最后,根据实际案例研究进行的模拟验证了 SC 对参考场景的影响,该参考场景包括具有光伏 (PV) 电站、非模块化电气负载和 EV 充电站 (CS) 的工业区。本文收集了结果,并比较和详细描述了通过操作不同的 SC 方法实现的性能改进。
密歇根州卫生与公众服务部计算机断层扫描 (CT) 扫描仪服务需求证明 (CON) 审查标准(根据 1978 年公共法案第 368 号法案第 22215 节(经修订)以及 1969 年公共法案第 306 号法案第 7 节和第 8 节(即密歇根州汇编法第 333.22215、24.207 和 24.208 节)授予 CON 委员会的权力。)第 1 节 适用性第 1 节 这些标准是批准启动、扩展、更换或获取 CT 服务以及根据法典第 222 部分提供服务的要求。根据法典第 222 部分,CT 是一项涵盖的临床服务。该部门应使用这些标准来应用《法典》第 22225(1) 节(即《密歇根州汇编法》第 333.22225(1) 节)和《法典》第 22225(2)(c) 节(即《密歇根州汇编法》第 333.22225(2)(c) 节)。第 2 节 定义 第 2 节 (1) 就这些标准而言: (a) “获得现有 CT 扫描仪服务”是指通过合同、所有权或其他类似安排获得现有固定或移动 CT 扫描仪服务或现有 CT 扫描仪的所有权或控制权。对于涉及移动 CT 扫描仪的拟议项目,这适用于中央服务协调员和/或主办机构。 (b) “可计费程序”是指作为单个单元计费并在密歇根州进行的 CT 程序。 (c) “身体扫描”包括所有脊柱 CT 扫描和颈部以下(包括颈部)解剖部位的任何 CT 扫描。 (d) “捆绑式全身扫描”是指作为一次 CT 程序收费的两次或多次全身扫描。 (e) “中央服务协调员”是指负责移动 CT 扫描仪操作的组织单位,并且是获准在密歇根州开展业务的法人实体。 (f) “需求证明委员会”或“委员会”是指根据《法典》第 22211 节(即《密歇根州汇编法》第 333.22211 节)设立的委员会。 (g) “法典”是指经修订的 1978 年《公共法案》第 368 号法案,即《密歇根州汇编法》第 333.1101 节及以下各节。 (h) “计算机断层扫描”或“CT”是指使用射线和计算机技术生成头部或身体的横截面图像。 (i) “CT-血管造影混合单元”是指由位于同一房间的 CT 和血管造影设备组成的集成系统,专为介入放射学或心脏手术而设计。CT 单元是一种引导机制,旨在作为手术的辅助手段。除非患者目前正在接受 CT-血管造影混合手术并且需要进行二次诊断研究,否则 CT 单元不得用于诊断研究。(j) “CT 当量”或“CTES”是指将每个类别的可计费程序数量乘以第 16 节中列出的相应转换系数后产生的单位数。 (k) “CT 扫描仪”是指能够对头部、其他身体部位或全身患者程序进行 CT 扫描的 X 射线 CT 扫描系统,包括仅用于 CT 程序的正电子发射断层扫描 (PET)/CT 扫描仪混合系统。该术语不包括使用内部管理的单光子伽马射线发射器的发射计算机断层扫描系统、正电子湮没 CT 系统、磁共振、超声计算机断层扫描系统、仅用于与 MRT 装置结合治疗计划目的的 CT 模拟器、非诊断性、术中引导断层扫描装置以及牙科 CT 扫描仪,这些扫描仪产生的峰值功率为 5 千瓦或更低(经制造商认证),专门设计用于生成 CT 图像,以方便持牌牙医在牙科执业期间进行牙科手术。 CT 扫描仪的任何其他用途(例如但不限于脊椎按摩治疗),产生的峰值功率为 5 千瓦或更低
