摘要 - 碰撞能量显着的圆形粒子加速器超出LHC,需要具有较高磁场的磁铁。对这种磁体的淬火保护是出于两个主要原因。首先,高能量密度和相对较高的淬火需要高性能的淬火保护系统。第二,在预计将运行的加速器机器中保护系统的集成数十年,要求易于整合,健壮和冗余元素。最近提出了一种名为Secondary Cliq(S-CLIQ)的新的且有前途的保护方法。它依赖于辅助正常线圈,这些线圈与线圈电隔离以保护但在磁性上耦合到它们。在磁铁淬灭检测时,耦合线圈具有双重功能:首先,它们会在超导体中引起高耦合损失,这足以使大多数绕组在几个Mil-mil-Liseconds中传递到正常状态;其次,他们通过磁耦合提取磁铁存储的一部分。在这项工作中,提出了基于放置在赛道磁铁顶部和底部的辅助线圈的S-CLIQ系统,并显示了由薄1毫米2线制成的。表明,在热点温度和地面峰值电压方面,淬灭保护性能优于替代方法,例如能量提取,淬火加热器和CLIQ。
如今,人们对微生物燃料电池产生了浓厚的兴趣,因为其中可以使用不同的基质来产生电能。为了找到替代品并贡献环保技术,本研究通过实验室规模的微生物燃料电池,使用沙雷氏菌和红酵母作为燃料源。制造了一个带有空气阴极的单室微生物燃料电池,以铜箔和石墨板分别作为阳极和阴极电极。为了表征电池,在室温(18±2.2 ◦C)下测量了 30 天的电压、电流、pH 值和电导率等物理化学参数。对于含有细菌和酵母的 MFC,可以产生峰值电压和电流值 0.53±0.01 V 和 0.55±0.02 V,电流值 1.76±0.16 mA 和 1.52±0.02 mA。此外,观察到酸性操作 pH 值,其电导率峰值约为 242 mS/cm。最后,这项工作证明了微生物在产生电流方面具有巨大的潜力,为发电提供了一种新的、有前途的方法© 2023 秘鲁自治大学。由 Elsevier Ltd. 出版。这是一篇根据 CC BY-NC-ND 许可开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
本研究采用理论和实验相结合的方法,研究汽车变速器中使用的电磁阀 (SV) 的可靠性。本研究的目标是使用加速测试来表征 SV 故障,并将结果与新的综合有限元模型 (第 1 部分) 相关联。我们设计和制造了一种定制测试设备,用于同时监控和启动多达四个 SV。该测试设备能够应用受控的占空比、电流和启动频率。SV 还放置在热室中,以便可以精确控制环境温度。该设备实时测量每个 SV 的温度、电流和电压。我们进行了一系列测试,以产生 SV 的重复故障。SV 的故障似乎是由于过热和螺线管线圈中使用的绝缘层故障造成的。电流测试在 100 � C 环境温度、16.8 V 平均峰值电压、50% 占空比和 60 Hz 启动频率下进行。发生故障时,由于螺线管线圈短路,螺线管电阻会下降到明显较低的值。电阻下降会导致平均电流明显增加。绝缘层也会熔化并流出 SV。因此,环境温度和电流的增加被认为会导致 SV 可靠性下降。© 2008 Elsevier Ltd. 保留所有权利。
摘要:研制了一种基于硅芯片的双层三维螺线管电磁动能收集器,可高效将低频(<100 Hz)振动能转化为电能。利用晶圆级微机电系统 (MEMS) 制造形成金属铸造模具,然后采用随后的铸造技术将熔融的 ZnAl 合金快速(几分钟内)填充到预先微加工的硅模中,在硅片中制作 300 匝螺线管线圈(内螺线管或外螺线管均为 150 匝),以便锯切成芯片。将圆柱形永磁体插入预蚀刻的通道中,以便在外部振动时滑动,该通道被螺线管包围。收集器芯片的尺寸小至 10.58 mm × 2.06 mm × 2.55 mm。螺线管的内阻约为 17.9 Ω。测得的最大峰峰值电压和平均功率输出分别为 120.4 mV 和 43.7 µ W 。电磁能量收集器的功率密度有很大的提高,为 786 µ W/cm 3 ,归一化功率密度为 98.3 µ W/cm 3 /g 。实验验证了电磁能量收集器能够通过步行、跑步和跳跃等各种人体运动来发电。晶圆级制造的芯片式螺线管电磁收集器在性能均匀、尺寸小和体积大的应用方面具有优势。
该 MPTEM 涉及实现一种新颖的电子光学元件——门控镜,用于将电子输入和输出耦合到多通成像系统。通过快速降低电位(“打开”状态),门控镜将作为透镜工作,并且电子可以输入到 MPTEM。然后可以提高电位(“关闭”状态),门控镜现在作为反射元件工作。可以再次降低电位,将电子输出耦合。我们的设计是一个机械对称的五电极透镜,具有两个外电极、两个内电极和一个中心电极。参见图 1 中的机械加工原型。每个电极将保持在独立于其他电极的静态直流电压下,并在中心电极上施加门控脉冲。中心电极和内电极(每侧)之间的电容约为 5 pF,内电极和外电极之间的电容约为 10 pF。同心真空室将每个电极大约 2 pF 的电容引入地。该门控镜对电压有严格的要求:理想情况下,门控镜将由完美的箱车脉冲串驱动,并始终处于完全打开(透镜)状态或完全关闭(镜子)状态。当然,这需要完美的电响应和无限的驱动电子设备带宽。实际上,需要容忍有限的上升时间和有限的脉冲平坦度。上升和下降时间要求由往返时间≳10 ns 给出。我们的初步目标是实现≤3 ns的上升和下降时间。平坦度要求来自色差考虑。我们的目标是将门控镜对色差的贡献保持在与电子源中的能量扩散引入的色差大致相同的数量级 [8]。因此,目标是在最终的 100 V 驱动电压下实现优于 1 V 的脉冲平坦度,或在我们的台式测试中实现峰峰值电压的 1%。请注意,此平坦度目标不仅适用于用于电子传输的脉冲顶部,还适用于尾部
目前正在开发脑机接口,以恢复因受伤或疾病而瘫痪的人的运动能力。虽然治疗潜力巨大,但接口的长期稳定性对于广泛的临床应用至关重要。虽然许多因素都会影响记录和刺激性能,包括电极材料稳定性和宿主组织反应,但这些因素尚未在人体植入物中进行研究。在这项临床研究中,我们试图通过外植体分析来表征材料完整性和生物组织封装,以确定影响电生理性能的因素。我们检查了从参与皮层内 BCI 研究的两名人类参与者身上移植的总共六个犹他阵列。在一名参与者 (P1) 体内植入了两个铂 (Pt) 阵列 980 天,在另一名参与者 (P2) 体内植入了两个 Pt 和两个氧化铱 (IrOx) 阵列 182 天。我们观察到,所有六个阵列的记录质量都呈现出相似的趋势,即在最初 30 – 40 天内峰峰值电压最初增加,随后在 P1 中逐渐下降。使用光学和双光子显微镜,我们观察到在参与者 P1 中植入较长时间的两个阵列的组织包裹程度更高。然后,我们使用扫描电子显微镜和能量色散 X 射线光谱来评估材料退化。发现 Pt 阵列的所有材料退化指标在植入时间较长的参与者中更为明显。两个 IrOx 阵列接受了短暂的调查刺激,其中一个阵列显示大多数受刺激部位的铱丢失。记录性能似乎不受这种铱损失的影响,这表明 IrOx 涂层的附着力可能受到刺激的影响,但金属层直到或之后才脱落阵列移除。总之,植入时间较长的阵列中组织包裹和材料降解更为明显。此外,这些阵列的信号幅度和阻抗也较低。应开发新的生物材料策略,以最大限度地减少纤维包裹并增强材料稳定性,以实现较长植入期内的高质量记录和刺激。