尽管物理模型可以非常成功地消除大气和地形影响,但它们本质上依赖于精确的光谱和辐射传感器校准以及崎岖地形中数字高程模型 (DEM) 的精度和适当的空间分辨率。此外,许多表面都有双向反射行为,即反射取决于照明和观看几何。如果观察不是在太阳主平面进行,则通常假设各向同性或朗伯反射定律适用于小视场 (FOV < 30 o,扫描角度 < ± 15 o) 传感器。然而,对于大 FOV 传感器和/或靠近主平面的数据记录,自然表面的各向异性反射行为会导致图像中的亮度梯度。这些影响可以通过将数据标准化为天底反射值的经验方法消除。此外,对于在低当地太阳高度角下照射的崎岖地形区域,这些影响也会发挥作用,并且可以通过 ATCOR 包中包含的经验方法来处理。
摘要:机载高光谱成像已被证明是一种有效的手段,可以为生物物理变量的检索提供新的见解。然而,从机载高光谱测量中获得的无偏信息的定量估计主要需要校正双向反射分布函数 (BRDF) 所描绘的陆地表面的各向异性散射特性。迄今为止,角度 BRDF 校正方法很少结合观察照明几何和地形信息来全面理解和量化 BRDF 的影响。森林地区尤其如此,因为这些地区通常地形崎岖。本文介绍了一种校正机载高光谱影像在崎岖地形上空森林覆盖区域的 BRDF 效应的方法,在本文的补充中称为崎岖地形-BRDF (RT-BRDF) 校正。根据机载扫描仪和局部地形的特点,为每个像素计算局部视角和照明几何形状,并在崎岖地形的情况下使用这两个变量来调整 Ross-Thick-Maignan 和 Li-Transit-Reciprocal 核。新的 BRDF 模型适用于多线机载高光谱数据的各向异性。本研究中的像素数设置为 35,000,基于分层随机抽样方法,以确保全面覆盖视角和照明角度,并尽量减少 BRDF 模型对所有波段的拟合误差。基于中国林业科学研究院在普洱地区(中国)的 LiDAR、CCD 和高光谱系统 (CAF-LiCHy) 获取的多线机载高光谱数据,将应用 RT-BRDF 校正的结果与当前经验(C、太阳冠层传感器 (SCS) 加 C(SCS + C))和半物理(SCS)地形校正方法的结果进行了比较。定量评估和目视检查均表明,RT-BRDF、C 和 SCS + C 校正方法均可降低地形影响。然而,RT-BRDF 方法似乎更有效地降低多条航线重叠区域反射率的变化,其优势在于可以降低由宽视场 (FOV) 机载扫描仪、崎岖地形和长飞行时间内变化的太阳照射角度组合引起的 BRDF 效应。具体而言,针叶林和阔叶林的变异系数 (CV) 平均下降分别为 3% 和 3.5%。这种改进在近红外 (NIR) 区域(即 > 750 nm)尤为明显。这一发现为大面积机载高光谱勘测开辟了新的应用可能性。
除了持续的“全场”扫描之外,对于所有用例,孔径加速能力都至关重要。对于涉及稳定、跟踪、测绘、瞄准等应用,快速改变方向的能力至关重要。图 2-4 显示了测试中一系列移动过程中的方位角和仰角孔径加速度分量,从图中可以看出,在测试过程中,孔径加速度经常超过 60,000°/s 2 。实际上,这种加速能力提供了其他替代方案无法实现的响应能力,使从高度不稳定的平台(例如在崎岖地形上快速移动的地面车辆和小型水面舰艇)获得稳定视觉成为可能,实现无延迟远程呈现、多目标跟踪等。
对于除持续“全场”扫描之外的所有用例,孔径加速能力都至关重要。对于涉及稳定、跟踪、测绘、瞄准等许多应用,快速改变方向的能力至关重要。图 2-4 显示了测试中一系列移动过程中的方位角和仰角孔径加速度分量,从图中可以看出,在测试过程中,孔径加速度经常超过 60,000°/s 2 。实际上,这种加速能力提供了其他方法无法实现的响应能力,使从高度不稳定的平台(例如在崎岖地形上快速移动的地面车辆和小型水面舰艇)获得稳定视觉成为可能,实现无延迟远程呈现、多目标跟踪等。
基于陀螺仪的稳定系统 如果没有稳定的潜望镜,主战坦克和装甲车辆在行驶过程中将面临巨大的危险。我们的高级版本使乘员能够快速判断车辆周围环境,并在移动中检测和攻击目标。它们具有基于陀螺仪的稳定机制,可补偿运动和振动,以在铺砌道路上甚至在崎岖地形上以任何速度保持图像稳定。集成的热像仪可在白天和夜晚以及恶劣天气条件下提供清晰的观察能力。机载激光器 �� ...
陀螺仪稳定系统如果没有稳定的潜望镜,主战坦克和装甲车辆在行驶过程中将很难发现目标。我们的高级版本使乘员组能够快速判断车辆周围环境并在移动中检测和攻击目标。它们采用基于陀螺仪的稳定机制,可以补偿运动和振动,从而在铺砌道路上甚至崎岖地形上以各种速度保持图像稳定。集成的热像仪可在白天、夜晚和恶劣天气条件下提供清晰的观察能力。机载激光器和连接的指挥和控制信息系统。
随着月球轨道器“辉夜姬”和“LRO”带来的大量高分辨率月球观测数据,目前的月球探测任务集中在特定图像中的单个岩石上进行讨论。为了对单个岩石进行这种“原位观测”,必须将航天器精确地降落在附近的平坦地形上。左图是一个具有科学意义的着陆点示例。(请注意,这不是SLIM的着陆点)。虽然这个例子考虑使用月球车到达探测目标,但穿越陡坡和崎岖地形仍然具有很高的难度。因此,实现精确着陆对于未来有效的探测非常重要。候选着陆点(这些与SLIM着陆点不同)
对于除持续“全场”扫描之外的所有用例,孔径加速能力都至关重要。对于涉及稳定、跟踪、测绘、瞄准等许多应用,快速改变方向的能力至关重要。图 2-4 显示了测试中一系列移动过程中的方位角和仰角孔径加速度分量,从图中可以看出,在测试过程中,孔径加速度经常超过 60,000°/s 2 。实际上,这种加速能力提供了其他方法无法实现的响应能力,使从高度不稳定的平台(例如在崎岖地形上快速移动的地面车辆和小型水面舰艇)获得稳定视觉成为可能,实现无延迟远程呈现、多目标跟踪等。
对于除持续“全场”扫描之外的所有用例,孔径加速能力都至关重要。对于涉及稳定、跟踪、测绘、瞄准等许多应用,快速改变方向的能力至关重要。图 2-4 显示了测试中一系列移动过程中的方位角和仰角孔径加速度分量,从图中可以看出,在测试过程中,孔径加速度经常超过 60,000°/s 2 。实际上,这种加速能力提供了其他方法无法实现的响应能力,使从高度不稳定的平台(例如在崎岖地形上快速移动的地面车辆和小型水面舰艇)获得稳定视觉成为可能,实现无延迟远程呈现、多目标跟踪等。