neg的笔尖在各个领域,包括空间应用,半导体制造过程以及医疗和环境设备,引起人们关注其广泛的工作温度范围和安全性特征,例如没有点火和气体产生风险。该样品运输是NEG迅速满足这些需求的重要步骤,并促进了常规二级电池无法容纳的应用领域的开发。现有的二级电池面临挑战,例如在低温下冻结电解质,并且由于高温下的侧面反应而导致内部材料的恶化。值得注意的是,这个高温问题也发生在常规的全稳态电池中,这些电池不使用液体电解质。因此,即使使用基于硫化物的全稳态电池(正在广泛研究),扩大上部工作温度极限也不容易。
b'锂离子电池是便携式电子设备、电动和混合电动交通工具以及电网储能系统等各个领域使用最广泛的电源。 [1] 锂离子电池的优点包括其高能量密度(100\xe2\x80\x93200 Whkg 1)、低自放电率和 20\xe2\x80\x9365 \xc2\xb0 C 的工作温度范围。随着对消费电子产品的需求不断增长以及向电动汽车和可再生能源存储的转变,对锂离子电池的需求急剧增加。因此,锂离子电池被视为关键技术。然而,它们也面临着未来的挑战,例如降低生产和整体设备成本、回收和处理废旧电池的需要以及开发新的环保材料。 [2,3] 锂离子电池最重要的、实际上最先进的阳极材料是石墨,其理论容量为 372 mAhg 1 ,对应于饱和锂成分 LiC 6 。纯石墨的容量
有许多因素可能会影响电池的降解行为,例如充电循环的数量或充电率。在这里,我们研究了工作温度对锂离子正极电极中微结构结构降解的影响。为此,微型结构的特征是在不同工作温度下在6C(10分钟)下循环的阴极,即20℃,30°C,30°C,40°C和50°C,每种工作条件扫描扫描电子显微镜(SEM)图像(SEM)图像的crossection Elector Simarcopoy(SEM)图像。5 mn 0。3 CO 0。2 O 2(NMC532)电极,以确定结构描述符,例如全局颗粒孔隙率,裂纹尺寸/长度/宽度/宽度分布,孔隙度以及单个颗粒的特定表面积分布。此外,已经部署了一种立体方法来研究局部粒子孔隙度,该孔隙度是距离粒子中心的距离的函数。结果表明,颗粒孔隙度随循环温度的升高而增加。粒子孔隙度在粒子中心最大,沿粒子半径降低至外部。粒子表面积在四个循环温度的老化条件下相似。
基于Zno纳米材料的气体传感器的高工作温度可能会缩短传感器的寿命并增加其功耗。在气体响应和温度方面,增强ZnO纳米材料的气体传感器的挥发性有机化合物(VOC)感应性能对于它们的实际应用至关重要。将贵金属装饰到纳米结构上是改善其感应特性的有效方法。在此,引入了水热合成的ZnO珊瑚色纳米板,并引入了PD纳米颗粒的装饰,以实现改善的VOC感应性能。研究了合成原始和PD E ZnO珊瑚样纳米板的形态,晶体结构,组成,原子结构以及气体传感特性。结果显示,基于PD E ZnO的传感器的原始ZnO传感器的最佳工作温度从450 C的最佳工作温度显着降低。通过用PD纳米颗粒的表面装饰,在350 C最佳工作温度下对丙酮的响应提高了三倍。PD E ZnO传感器的响应时间和恢复时间比原始ZnO传感器的速度快三倍。PD E ZnO传感器达到了17 ppt的理论检测极限,在350 C时达到3.5 E 2.5 e 2.5 ppm丙酮的灵敏度。传感器的瞬态稳定性在几个开/关开关从空气到气体的开关周期后,揭示了制造设备的有效可重复性。还讨论了多孔PD E ZnO珊瑚样纳米板传感器的合理机制。©2021作者。Elsevier B.V.的出版服务代表河内越南国立大学。这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nc-nd/4.0/)下的开放访问文章。
注释:1.电流传输比(百分比)定义为输出集电极电流 I O 与正向 LED 输入电流 I F 之比乘以 100。2.建议使用 0.1 F 旁路电容连接引脚 5 和 8。3.1.9 k 负载代表 1.6 mA 的 1 TTL 单位负载和 5.6 k 上拉电阻。4.对于任何给定设备,脉冲宽度失真 (PWD) 定义为 |t PHL – t PLH |。5.相同测试条件下任意两个部件之间的 t PLH 和 t PHL 之间的差异。6.逻辑高电平下的共模瞬态抗扰度是共模脉冲 V CM 上升沿上的最大可容忍(正)dV CM /dt,以确保输出将保持在逻辑高状态(即,V O > 2.0 V)。逻辑低电平下的共模瞬态抗扰度是共模脉冲信号 V CM 下降沿上的最大可容忍(负)dV CM /dt,以确保输出将保持在逻辑低状态(即,V O < 0.8 V)。7.设备被视为双端设备:引脚 1、2、3 和 4 短接在一起,引脚 5、6、7 和 8 短接在一起。8.根据 UL 1577,每个光耦合器都通过施加绝缘测试电压 > 6000 V RMS 持续 1 秒进行验证测试。