The Project at a Glance 3 1 General Overview of Bajra production, Clusters, PHM and value addition in India 1.1 Introduction 4 1.2 Origin, Distribution and Production of Bajra 5 1.3 Varieties 8 1.4 Health benefits and Nutritional Importance 10 1.5 Cultivation, Bearing & Post-Harvest Managements 14 1.6 Processing and Value Addition in India 17 2 Model Bajra flour processing under FME Scheme 2.1 Location of Proposed project and land 20 2.2 Bajra面粉加工厂的安装能力20 2.3单元20 2.4制造过程21 2.5 Bajra Flour的市场需求和供应Bajra Flour 23 2.6 Bajra Products的营销策略26 2.7详细项目假设26 26 2.8固定资本投资2.8固定资本投资2.8.8.1收入和盈利能力分析31 2.13还款附表32 2.14资产折旧33 2.15项目34 2.16休息甚至分析35 2.17饼图37 2.18工厂布局38 2.19机械供应商38 38 33 38 3型号DPR和指南的限制3.1型号DPR 3.3 3.2指南3.2指南3.2指南3.2指南3.2指南3.2 3.2指南>
摘要:非可编程可再生能源的能源积累是能源转型的关键方面。利用可再生能源的剩余电力,电转气工厂可以生产替代天然气 (SNG),可将其注入现有基础设施,进行大规模和长期的能源储存,有助于实现天然气电网脱碳。工厂布局、二氧化碳捕获方法和可能的电力联产可以提高 SNG 合成工厂的效率和便利性。在本文中,提出了一种同时生产 SNG 和电力的系统,该系统以生物质和可再生能源的波动电力为原料,使用基于 Allam 热力学循环的工厂作为动力装置。Allam 动力循环使用超临界 CO 2 作为演化流体,基于气体燃料的富氧燃烧,从而大大简化了 CO 2 的捕获。在所提出的系统中,富氧燃烧是使用生物质合成气和电解氧进行的。通过富氧燃烧产生的二氧化碳被捕获,随后与可再生氢一起用于通过热化学甲烷化生产 SNG。该系统还与固体氧化物电解器和生物质气化器耦合。从能源相关角度分析了整个工厂。结果显示,整体工厂效率在 LHV 基础上为 67.6%(在 HHV 基础上为 71.6%),同时生产大量电力和高热值 SNG,其成分可与现有天然气网络兼容。
摘要:为了应对能源转型带来的挑战,可再生能源应变得更加持续可用、可靠和具有成本效益。因此,本文介绍了一种称为基于流化的颗粒热能存储 (FP-TES) 的概念的中试工厂布局的分析和数值研究。FP-TES 是一种高度灵活的短期至长期流化床再生热存储,利用压力梯度进行热粉传输,从而实现最小损失、高能量密度、紧凑结构和逆流热交换。分散式设置中的此类设备(包括在能源密集型和特别是热密集型行业中,存储潜热或显热或电能转化为热能以最大限度地减少损失并补偿波动)可以帮助实现上述目标。本文的第一部分重点介绍通过利用计算粒子流体动力学 (CPFD) 的数值研究进行几何和流体设计。在此过程中,开发了一种称为 FP-TES 联合仿真的受控瞬态仿真方法,为测试台设计和进一步联合仿真的执行奠定了基础。在此过程中,开发了一种先进的旋转对称料斗设计,在热交换器 (HEX) 中带有附加挡板,并在内部管道中稳定颗粒质量流。此外,通过考虑料斗外层的隔热,提出了贡献体积热导率,以证明低热损失和有限的隔热需求。
• 场地规划 20003-SP1,日期为 2020 年 7 月,修订版 1 04/08/20,由 Robinson Land Development 编制。 • 场地 SWM/排水规划 D1、2 和 3,日期为 2020 年 7 月,由 Robinson Land Development 编制。 • 平整规划 20003-GR1,日期为 2020 年 7 月,由 Robinson Land Development 编制。 • 初步岩土工程调查 ~ 拟议场地开发 5455 Boundary Road,渥太华,安大略省,日期为 2020 年 1 月 31 日,由 GEMTEC 编制。 • 5455 Boundary Road,渥太华,安大略省 ~ 服务和雨水管理报告,日期为 2020 年 7 月,由 Robinson Land Development 编制。 • 5455 边界路 ~ 交通影响评估(第 1 步筛选报告和第 2 步范围界定报告,日期为 2020 年 5 月,由 CGH Transportation 编制。• 侵蚀和沉积物控制计划,日期为 2020 年 7 月,由 Robinson Land Development 编制。• 5455 边界路 ~ 渠道审查,日期为 2020 年 6 月 19 日,由 Muncaster Environmental Planning Inc. 编制。• 工厂布局第 1 和 2 阶段、工厂立面第 1 和 2 阶段,由 Astec Inc. 编制。• 景观规划 L1 和 2、景观细节 L3,日期为 2020 年 6 月,由 Levstek Consultants Landscape Architects 编制。• 调查规划参考编号:19-10-156-00,日期为 2020 年 2 月 3 日,由 JD. Barnes Ltd. 的 CM Fox 签署。• 第一阶段环境场地评估 ~ 5455 Boundary Road, Navan Ontario,日期为 2020两项环境场地评估 ~ 5455 Boundary Road, Navan Ontario,日期为 2020 年 5 月 29 日,由 GEMTEC 编制。
Embotech Receives CHF 23.5 M in Funding to Expand Auton- omous Driving Solutions for Logistics in Europe and Beyond New funding from Emerald Technology Ventures, Yttrium, BMW i Ventures, Nabtesco Technology Ventures, Sustainable Forward Capital Fund, and RKK VC to support growth of logistics automation solutions Zurich, Switzerland.2024年12月12日 - Embotech是一种自动驱动解决方案的创新者,用于工业物流,在B系列资金中重新估计2350万瑞士法郎(约合2700万美元),以帮助公司扩展其自动化的车辆越野车(AVM)(AVM)(AVM)和自动型号(AVM),并且在欧洲和最终的欧洲和最终的美国和最终的美国和美国和美国的自动型号(ATT)解决方案。资金回合由Emerald Technology Ventures和YTTrium领导,BMW I Ventures,Nabtesco Technology Ventures,可持续远期资本基金,RKK VC和现有投资者提供了额外的资金。Embotech是嵌入式优化技术的缩写,已经为其在完成的车辆逻辑中的AVM解决方案及其港口和院子物流应用程序的ATT解决方案提供了具有里程碑意义的多年推出合同。为其AVM业务,Embotech已与Automaker BMW签订了一项多年合同,在2025年底之前将其解决方案安装在全球六家乘用车工厂中。随着2023年底以来的推出,Embotech的技术已经每天在最终生产中驾驶数百辆汽车,并将在2025年初每天扩展到每天数千辆汽车。该解决方案已经在宝马的Dingolfing和Leipzig植物中运营,目前涉及Regensburg。宝马预计将在未来十年与该系统登录数百万公里。到2025年底,该技术还将在南卡罗来纳州斯巴达堡的宝马工厂运营。Embotech是市场上唯一具有固定的AVM解决方案的供应商,也是唯一具有生产环境经验的玩家。新的宝马车辆沿着两个组装设施之间的一公里路线,通过吱吱作响和拨浪道的轨道和整理区域进行指导 - 在旅途的任何阶段,不需要驾驶员。Embotech AVM系统不需要对车辆的更改,并且使用现有基础架构上安装的现成的LIDAR传感器。该技术可以适用于所有车辆模型,并更换工厂布局,以适应不断增长的生产量和新的生产布局。为其ATT业务,Embotech正在为欧洲最大的港口(荷兰鹿特丹港口)的重大推出做准备,其中30辆将在未来两年内部署。电动ATTS配备了Embotech的4级AU级车辆(AV)套件,这使它们能够在混合交通情况下自主操作。Embotech的自主拖拉机使用组合
二氧化碳是目前最主要的温室气体 (GHG),全球每年向大气中的排放量已达到约 360 亿吨(1950 年排放量为 60 亿吨)。[1] 为履行《巴黎协定》并将全球变暖控制在远低于工业化前水平 1.5-2 ◦ C 的水平,到 2050 年后,温室气体净排放量必须变为零甚至为负值 [2]。在降低工业过程的能源强度和碳足迹方面已经取得了重大进展,但这一努力必须伴随着二氧化碳捕获和永久储存 (CCS) 的明确部署。CCS 是一个从二氧化碳捕获到运输和长期储存的流程链,其中二氧化碳捕获是最昂贵和耗能最高的步骤 [1]。 CCS 仍需要大规模部署才能实现减缓气候变化的目标,因为目前被捕获并最终封存的二氧化碳不到 4000 万吨 [3]。已确定的三种二氧化碳捕获策略是:燃烧后、燃烧前和富氧燃烧。燃烧后技术在相对较低的二氧化碳分压下(通常含有 10% 到 15% 的二氧化碳)从烟气中去除二氧化碳。燃烧后被认为是一种末端解决方案,可以集成到现有工艺中,只需对工厂布局进行合理的少量改动。然而,其效率在具有多个二氧化碳排放点(锅炉、熔炉等)的行业中受到限制,例如钢铁制造厂和石油炼制行业(两者的碳排放量约占全球的 12%)[4]。在预燃烧系统中,碳以 CO 和 CO 2 的形式存在,这些物质是先前的蒸汽重整或气化过程的产物。然后,这些碳被完全转化为 CO 2,并在高压下与氢气分离。近年来,低碳氢气的生产引起了人们的极大兴趣,它可以用作清洁能源或作为生产氨、甲醇或合成燃料(主要通过费托合成)的原料,是一种持续减少这些行业碳足迹的方法 [5]。最后,在富氧燃烧系统中,燃料的燃烧是在纯氧而不是空气中进行的,由于进入的助燃气体中不含氮,因此可以产生几乎纯净的 CO 2 气流。然而,为了保持 CO 2 的纯度,必须避免系统中任何潜在的空气渗入,这意味着需要严格且昂贵的安全程序。本期特刊汇编了来自不同学科的杰出研究人员所开展的创新研究的成功论文,这些研究将为二氧化碳捕获和储存技术领域的先进技术提供实质性进展。以下总结了本期特刊中主要研究方向和研究结果的相关特征。迄今为止,绝大多数大型试点和商业化二氧化碳捕获、运输和封存工厂都是在发达国家启动的。这是因为,旨在实施推广 CCS 的政策和监管框架的主要努力已在发达国家实施 [ 6 ]。然而,预计未来几十年发展中国家的能源需求将强劲增长,因此,大约 70% 的 CCS 开发应在这些地区进行,以满足长期需求。