摘要:随着工业4.0的发展,增材制造将被广泛应用于生产定制化部件。然而,通过反复试验的方法利用增材制造技术生产出结构合理、机械性能良好的部件相当耗时且成本高昂。为了获得最佳工艺条件,需要进行大量实验来优化给定机器和工艺中的工艺变量。数字孪生(DT)被定义为生产系统或服务的数字化表示,或者仅仅是具有某些属性或条件的活跃独特产品。它们是帮助克服增材制造中许多问题的潜在解决方案,以提高零件质量并缩短产品合格时间。DT系统对于理解、分析和改进产品、服务系统或生产非常有帮助。然而,由于对DT概念、框架和开发方法缺乏透彻理解等诸多因素,真正的DT发展仍然受到阻碍。此外,现有棕地系统与其数据之间的链接正在开发中。本文旨在总结增材制造DT的现状和问题,以便为后续DT系统研究提供更多参考。
在增材制造中,新几何形状、工艺参数和材料的升级会耗费大量的时间和成本。特别是对于激光定向能量沉积 (DED-L),熔池的极端物理环境需要进行多次反复试验才能量化工艺行为。这些测试大大增加了制造费用。因此,如果可以减少实验测试量,DED-L 工艺的数字孪生 (DT) 将具有巨大的价值。在本研究中,研究了基于耦合全局和局部模型的多尺度 DT。全局模型模拟整个部件的加热,而局部模型仅代表该全局几何形状的特定区域。对局部模型使用高密度网格可以模拟 DED-L 中典型的特定激光-粉末相互作用和快速冷却速率。全局模型的结果用于将有关打印作业期间工艺条件变化的情境感知集成到局部模型中。这种过程演变不可能通过较小尺寸的模型获得,并且对于准确模拟多包层沉积而言是必不可少的。DT 在具有现场过程监控功能的工业级 DED-L 机器上进行了验证。在所有情况下,DT 都与实验数据和金相检查高度相似,并且计算成本合理。
(3) Kaladhar K 博士(FR&D 顾问),含多种药物的儿科糖浆(2018 年)(提供药物配方优化咨询,解决不相容性问题,延长保质期,产品进入市场),SKAN Research Labs Pvt Ltd,印度本地治里。 (4) Kaladhar K 博士(首席研究员),开发基于阿司匹林的 COVID 药物技术并邀请行业进行技术转让 (2021)(基于聚合物的药物输送系统设计、开发和优化药品制造工艺条件,邀请通过快速通道计划表达开发产品(COVID-19 药物)的兴趣。 (5) Kaladhar K 博士(顾问),BioGen Heart,通过 3D 打印制造全人工心脏,VMHS,APMZ,AP,印度(2020 年)(行业咨询)(提供基于聚合物复合材料的生物墨水设计咨询,用于 3D 打印整个心脏)。 (6)) Kaladhar K 博士(FR&D 顾问),多种维生素 FDC 片剂,Megasis Biotek Ltd,印度喀拉拉邦埃拉纳库拉姆,预配方优化(工业项目启动,因 Covid 而中止)(2020 年)(开发合作)。
摘要 - 作为量子信息处理器在quantum位(Qubit)计数和功能性中生长,控制和测量系统成为大规模可扩展性的限制因素。为了应对这一挑战并保持速度不断发展的经典控制要求,完全控制堆栈访问对于系统级别的优化至关重要。我们设计了一个基于模块化的FPGA(可编程门阵列)的系统,称为Qubic,以控制和测量超导量子处理单元。该系统包括室温电子硬件,FPGA门软件和工程软件。由几个商业现成的评估板和内部开发的电路板组装的原型硬件模式。gateware和软件旨在实现基本的量子控制和测量协议。通过在劳伦斯·伯克利国家实验室(Lawrence Berkeley National Laberatory)的高级量子测试中运行的超导量子处理器上的超导量子处理器上进行量子芯片表征,栅极优化和随机基准测量序列来证明系统功能和性能。通过随机基准测量,单量和两级工艺条件的测量为0.9980±0.0001和0.948±0.004。具有快速电路序列加载能力,Qubic可以有效地执行随机编译实验,并证明执行更复杂的算法的可行性。
摘要:镍基高温合金具有优异的耐腐蚀和耐高温性能,在能源和航空航天工业中广受欢迎。镍合金的直接金属沉积 (DMD) 已达到技术成熟度,可用于多种应用,尤其是涡轮机械部件的修复。然而,DMD 工艺过程中的零件质量和缺陷形成问题仍然存在。激光重熔可以有效地预防和修复金属增材制造 (AM) 过程中的缺陷;然而,很少有研究关注这方面的数值建模和实验工艺参数优化。因此,本研究的目的是通过数值模拟和实验分析来研究确定重熔工艺参数的效果,以优化 DMD 零件修复的工业工艺链。热传导模型分析了 360 种不同的工艺条件,并将预测的熔体几何形状与流体流动模型和选定参考条件下的实验单轨观测值进行了比较。随后,将重熔工艺应用于演示修复案例。结果表明,模型可以很好地预测熔池形状,优化的重熔工艺提高了基体和 DMD 材料之间的结合质量。因此,DMD 部件制造和修复工艺可以从此处开发的重熔步骤中受益。
摘要 - 作为量子信息处理器在quantum位(Qubit)计数和功能性中生长,控制和测量系统成为大规模可扩展性的限制因素。为了应对这一挑战并保持速度不断发展的经典控制要求,完全控制堆栈访问对于系统级别的优化至关重要。我们设计了一个基于模块化的FPGA(可编程门阵列)的系统,称为Qubic,以控制和测量超导量子处理单元。该系统包括室温电子硬件,FPGA门软件和工程软件。由几个商业现成的评估板和内部开发的电路板组装的原型硬件模式。gateware和软件旨在实现基本的量子控制和测量协议。通过在劳伦斯·伯克利国家实验室(Lawrence Berkeley National Laberatory)的高级量子测试中运行的超导量子处理器上的超导量子处理器上进行量子芯片表征,栅极优化和随机基准测量序列来证明系统功能和性能。通过随机基准测量,单量和两级工艺条件的测量为0.9980±0.0001和0.948±0.004。具有快速电路序列加载能力,Qubic可以有效地执行随机编译实验,并证明执行更复杂的算法的可行性。
摘要:本研究旨在通过理论和实验研究来扩展对 3.2 mm 厚 Ti-6Al-4V 合金多层壁直接激光沉积 (DLD) 过程中应力场演变的理解水平。工艺条件接近于通过 DLD 方法生产大尺寸结构的条件,因此样品具有相同的热历史。开发了一种基于隐式有限元法的模拟程序,用于应力场演变的理论研究。通过使用实验获得的 DLD 处理的 Ti-6Al-4V 合金的温度相关力学性能,模拟的准确性显著提高。通过中子衍射实验测量了堆积中的残余应力场。使用平面应力方法和力-动量平衡确定了对测量应力具有决定性的无应力晶格参数。分析讨论了残余应力场不均匀性对实验测量精度和模拟过程有效性的影响。基于数值结果发现,全厚度应力分布的不均匀性在中心横截面达到最大值,而在堆积端部,应力分布几乎均匀。靠近基体的堆积端部主应力分量为拉应力。此外,计算出的等效塑性应变在堆积端部附近达到5.9%,此处沉积层已完成,而塑性应变实际上等于实验测量的DLD加工合金的延展性,即6.2%。通过力-动量平衡和平面应力方法获得的实验测得的残余应力略有不同。
摘要:Al-Sn-Al晶圆键合是一种新型的半导体制造技术,在器件制造中发挥着重要作用,键合工艺的优化和键合强度的测试一直是关键问题,但仅通过物理实验来研究上述问题存在实验重复性强、成本高、效率低等困难。深度学习算法可以通过训练大量数据快速模拟复杂的物理关联,很好地解决了晶圆键合研究的困难。因此,本文提出利用深度学习模型(2层CNN和50层ResNet)实现不同键合条件下键合强度的自主识别,对比测试集结果表明ResNet模型的准确率为99.17%,优于CNN模型的91.67%。然后利用Canny边缘检测器对识别出的图像进行分析,结果显示晶圆的断裂面形貌为孔状结构,且晶圆表面孔移动面积越小,键合强度越高。此外,还验证了键合时间和键合温度对键合强度的影响,结果表明相对较短的键合时间和较低的键合温度可获得更好的晶圆键合强度。本研究展示了利用深度学习加速晶圆键合强度识别和工艺条件优化的潜力。
石墨烯是一种二维材料,以其出色的电子特性而闻名。然而,为了在实际设备中利用这些特性,必须大大减少与基板和任何周围材料的电子耦合。六方氮化硼 (hBN) 是另一种二维材料,在这方面非常有前景。它既可用于将石墨烯与基板隔离,也可用于作为栅极介电材料。虽然通过机械剥离和转移获得的设备确实证实了石墨烯/hBN 异质结构的强大潜力,但可扩展且可靠的生长技术仍有待证明:开发制造二维异质结构的新方法非常重要。通过结合项目合作伙伴的专业知识和资源,拟议研究的目的是探索和开发在与 Si 微电子兼容的基板上制造石墨烯/hBN 异质结构的各种方法。为了实现这些目标,石墨烯/hBN 异质结构将通过两种主要方法生长:分子束外延和化学气相沉积。该项目过程中开发的特定成核增强横向图案化技术可能会改善该工艺。将应用先进的显微镜和光谱技术来提供有关薄膜形态、晶体学、化学和电学特性的信息。将通过从头算密度泛函理论进行原子计算,并辅以大规模动力学蒙特卡罗模拟,以了解生长机制和最佳工艺条件。
技术公告 配制酸酐固化环氧体系 简介 Dixie Chemical Company 生产一系列非常适合固化环氧树脂的脂环族酸酐。 这些酸酐包括: • 四氢邻苯二甲酸酐 (THPA) • 六氢邻苯二甲酸酐 (HHPA) • 甲基四氢邻苯二甲酸酐 (MTHPA) • 甲基六氢邻苯二甲酸酐 (MHHPA) • Nadic® 甲基酸酐 (NMA) • 这些材料的配制混合物 关于每种材料的详细信息,请参见 Dixie Chemical Company 提供的特定产品技术公告。 这些酸酐通常用于固化许多高挑战性应用中的环氧树脂,包括用于高性能航空航天和军事应用的纤维增强复合材料,以及纤维缠绕轴承等机械要求高的应用。 它们还具有出色的电气性能,可用于高压应用以及封装电子元件和电路。固化环氧树脂的性质取决于起始环氧树脂、固化剂、促进剂、固化剂与树脂的比例、固化时间和固化温度以及后固化时间和温度。没有一种配方或一组工艺条件能够产生具有所有特性最佳值的固化树脂。因此,在选择配方之前,必须确定预期最终用途所需的特性。一般而言,树脂交联度越高,热变形温度 (HDT)、硬度和耐化学性就越高,但固化产品的抗冲击性和弯曲强度就越低。以下部分将讨论影响性能的因素。