THS1230 是一款 CMOS、低功耗、12 位、30 MSPS 模数转换器 (ADC),采用 3.3 V 电源供电。THS1230 为电路开发人员提供了完全的灵活性。THS1230 的模拟输入是差分的,模式 2 的增益为 0.5,模式 1 的增益为 1.0。THS1230 提供多种电压基准选择,以满足用户的设计要求。为了获得更大的设计灵活性,可以绕过内部基准,使用外部基准来满足应用的直流精度和温度漂移要求。超范围输出用于监控 THS1230 输入范围内的任何超范围情况。
概述 GM50301 是一款 2.5GHz 、 10 路输出差分扇出缓冲 器,用于高频、低抖动时钟 / 数据分配和电平转换。输 入时钟可以从两个通用输入或一个晶体输入中选择。 所选定的输入时钟被分配到三组输出,两组包含 5 个 差分的输出和 1 个 LVCMOS 输出。两个差分输出 组均可被独立配置为 LVPECL 、 LVDS 或 HCSL 驱 动器,或者被禁用。 LVCMOS 输出具有用于在启用 或禁用时实现无短脉冲运行的同步使能输入。 GM50301 采用一个 3.3V 内核电源和 3 个独立的 3.3V 或 2.5V 输出电源供电。 GM50301 具有高性能、高功效而且用途广泛,使其 成为替代固定输出缓冲器器件的理想选择,同时增加 系统中的时序裕度。 GM50301 在内核和输出电源域之间没有电源时序要 求。 功能框图
摘要:金属纳米结构对光学激发的响应导致局部表面等离子体(LSP)生成,并在例如量子光学和纳米光子学中驱动纳米级场限制驱动应用。Terahertz域中的现场采样对追踪此类集体激发的能力产生了巨大影响。在这里,我们扩展了此类功能,并在更相关的Petahertz域中对LSP进行直接采样。该方法允许以亚周期精度测量任意纳米结构中的LSP场。我们演示了胶体纳米颗粒的技术,并将结果与有限差分的时间域计算进行了比较,这表明可以解决等离子体激发的堆积和逐步化。此外,我们观察到了几个周期脉冲的光谱阶段的重塑,并通过调整等离激元样品来证明临时脉冲成型。该方法可以扩展到单个纳米系统,并应用于探索亚周期现象。关键字:等离激光,等离子体动力学,金纳米颗粒,Petahertz现场采样■简介
摘要:人类的情绪随时间而变化,非平稳,性质复杂,是日常生活中人类反应的结果。从一维脑电信号中连续检测人类情绪是一项艰巨的任务。本文提出了一种使用连续小波变换从脑电信号中检测情绪的先进信号处理机制。原始脑电信号的空间和时间分量被转换成二维频谱图,然后进行特征提取。实施混合时空深度神经网络以提取丰富的特征。基于差分的熵特征选择技术根据熵、低信息区域和高信息区域自适应区分特征。使用深度特征包 (BoDF) 创建相似特征的聚类并计算特征词汇以降低特征维数。在 SEED 数据集上进行了广泛的实验,结果表明与最先进的方法相比,所提出的方法具有重要意义。具体来说,所提出的模型在 SJTU SEED 数据集上分别对 SVM、集成、树和 KNN 分类器实现了 96.7%、96.2%、95.8% 和 95.3% 的准确率。
使用的信号是差分的:即位由 Data+ 和 Data- 之间的电压差表示。导体被绞合并保持彼此靠近,以便电气干扰以相同的强度影响它们,并且电压差的改变尽可能小。当设备未发送时,它准备“接收”,在通信端口上显示高阻抗。标准 RS-485 (EIA/TIA-485) 5 对输入阻抗设置了一些限制,并定义了每个设备在传输数据时应能够在线路上传输的电流/功率的一些要求。特别是,根据参考标准的规定,如果线路上最多连接 31 个“处于接收模式”的设备,则可以正确传输数据。因此,按照标准规定,RS-485 可确保与连接到总线的最多 32 个设备正确进行通信;并且在每个通信周期中,一个设备处于“传输模式”,其他 31 个设备处于“接收模式”。事实上,由于所有设备都并行连接在一条总线上,因此一次只能有一个设备传输,否则信号会重叠,从而变得无法识别。RS-485 接口不包含任何旨在定义哪个设备有权传输的机制;此任务由所用协议的更高层完成。每个传输字符的结构、其持续时间和传输配置的可能性与之前看到的串行接口 RS-232 相同;例如,可以将数据传输设置为 19200 波特的速度,使用 1 个起始位、1 个停止位和 1 个奇偶校验位,例如处于“偶数”模式。连接到同一总线的所有设备必须具有相同的设置才能相互通信。在工业自动化和能源分配中,大部分通信网络都是通过总线技术实现的,最常用的物理层是 RS-485 接口。
摘要。在 EUROCRYPT 2020 上,Hosoyamada 和 Sasaki 提出了第一个专门针对哈希函数的量子攻击——反弹攻击的量子版本,利用概率太低而无法在经典环境中使用的微分。这项工作为哈希函数抵御量子攻击的安全性开辟了一个新视角。特别是,它告诉我们,对微分的搜索不应止步于经典的生日界限。尽管这些有趣且有希望的含义,但 Hosoyamada 和 Sasaki 描述的具体攻击利用了大型量子随机存取存储器 (qRAM),这种资源在可预见的未来是否可用即使在量子计算界也存在争议。如果没有大型 qRAM,这些攻击会导致时间复杂度显著增加。在这项工作中,我们通过执行基于具有非全活动超级 S 盒的微分的量子反弹攻击来减少甚至避免使用 qRAM。在此过程中,提出了一种基于 MILP 的方法来系统地探索针对反弹攻击的有用截断差分的搜索空间。 结果,我们获得了对 AES - MMO 、 AES - MP 的改进攻击,以及对 4 轮和 5 轮 Grøstl - 512 的第一个经典碰撞攻击。 有趣的是,在 AES - MMO 的分析中使用非全活动超级 S 盒差分会导致收集足够起点的新困难。 为了克服这个问题,我们考虑涉及两个消息块的攻击以获得更多的自由度,并且我们成功地将对 AES - MMO 和 AES - MP (EUROCRYPT 2020) 的碰撞攻击的 qRAM 需求从 2 48 压缩到 2 16 到 0 的范围,同时仍然保持可比的时间复杂度。据我们所知,这是第一次专门针对哈希函数的量子攻击,其性能略优于 Chailloux、Naya-Plasencia 和 Schrottenloher 的通用量子