AF 后过滤器 SQ 蒸汽质量 BD 排污 SQA 蒸汽质量分析仪 BFW 锅炉给水 TAH 总酸化硬度 BIW 水中沥青 TDS 总溶解固体 BS&W 基本沉积物和水 TOC 总有机碳 BW 反冲洗 TOE 技术操作范围 bpcd 每日历天桶数 TOI 总无机碳 COSIA 加拿大油砂创新联盟 TPH 总石油烃 CPF 中央处理设施 TSS 总悬浮固体 CSS 循环蒸汽刺激 TST 管壁温度 CZ 澄清区 TQM 热质量流量计 DCS 分布式控制系统 TWT 管壁温度 EB 乳化破乳 UA 传热系数 FAC 流动加速腐蚀 UT 超声波检测 FTIR 傅立叶变换红外检测 USGPM 美国加仑/分钟 GHG 温室气体 WLS 温石灰软化 HLS 热石灰软化 WOR 水油比 HPSS 高压蒸汽分离器 WTDC 水技术开发中心 H&S 健康与安全 Y'x'TP 第 'x' 年测试计划 ILM 界面液位测量 KPI 关键绩效指标 LOI 点火损失 MagOx 氧化镁 MW 分子量 NDP 核密度分析仪 NF 纳滤 NIR 近红外传感器 OPEX 运营费用 OIW 水中油 ORF 除油过滤器 OTSG 直流蒸汽发生器 PSD 粒度分布 PW 采出水 PWC 采出水冷却器 REB 反相破乳器 RMZ 快速混合区 RT 射线照相检测 RTD 电阻温度探测器 SAGD 蒸汽辅助重力泄油 SMZ 慢速混合区 SOR 蒸汽油比
大力投资改革教育体系对于确保我们拥有做好充分准备保护水文循环的一代人来说至关重要。年轻的工程师、经济学家、农民、企业家、研究人员、银行家和政策制定者具有独特的优势,可以促进对与水有关的挑战的系统理解并引发变革。青年潜力巨大,然而,我们社会中许多价值创造领域——包括学术界、工业界和政策制定——仍然是等级森严的,由老一辈主导。因此,我们敦促各级政府投资青年,塑造当今的劳动力市场,将年轻专业人员及其声音融入经济。通过投资教育和为年轻专业人员创造绿色就业,我们可以释放跨部门代际创新和研究的指数级增长,应对系统性挑战并推动变革,同时扩大和支持现有的青年主导的解决方案和人才。
AB 1755 Open and Transparent Water Data Act AB 685 Human Right to Water Act CDPH California Department of Public Health DDW Division of Drinking Water DESC Data Executive Steering Committee DIET Data Integration & Execution Team DFA Division of Financial Assistance DMIT Data Management and Innovation Team DWR Department of Water Resources EPA Environmental Protection Agency GAMA Groundwater Ambient Monitoring & Assessment GSA Groundwater Sustainability Agency GSP Groundwater Sustainability Plan HR2W Human Right to Water NA Needs Assessment OEHHA Office of Environmental Health Hazard Assessment OIMA Office of Information Management and Analysis PWS Public Water System SADW Safe and Affordable Drinking Water SAFER Safe and Affordable Funding for Equity and Resilience SB 200 Save and Affordable Drinking Water legislation SDGs Sustainable Development Goals SDWIS Safe Drinking Water Information System SGMA Sustainable Groundwater Management Act SWRCB State Water Resources Control Board TMF Technical, Managerial, Financial
控制服务 当危机情况持续很久,这些“紧急解决方案”无法再维持,或者干预环境允许更长的准备/设计阶段时,SI 强调背景知识(情况分析、一次性和持续评估)、伙伴关系战略、技术支持和与利益相关者的对话,以便提供更适应和更有效的中期水和卫生服务及/或流行病控制服务。技术和社会层面是这些响应的核心,其主要目的是(i)至少实现 JMP 2 的水和卫生服务阶梯上的“基本”水平,(ii)最大限度地提高受益者对所提供服务的满意度和主人翁意识,以及(iii)促进所有人采用适当的水和卫生实践。这些响应主要针对被迫流离失所者营地(无论是正式的还是非正式的),以及更普遍的地区和/
本卷涵盖了用于水处理和净化的技术。熟悉该领域的人会立即将其视为固液分离的论文。然而,该主题要广泛得多,因为所讨论的技术不仅限于仅依赖物理方法处理和净化废水的污染控制硬件。本书试图尽可能广泛地介绍那些适用于水(例如饮用水)和废水(即工业和市政)来源的技术。所讨论的方法和技术是物理、化学和热技术的结合。本书共有十二章。第一章介绍了术语和概念,以及需要水处理实践的原因。本章还通过为所讨论的主题提供组织结构,为本书的平衡奠定了基础。第二章涵盖了过滤理论和实践的 A-B-C,这是本书几章中讨论的基本单元操作之一。第 3 章开始讨论废水的化学性质,并重点介绍了使用化学添加剂协助悬浮固体的物理分离过程。第 4 章至第 7 章介绍了特定技术的过滤实践。这三章涵盖了广泛的硬件选项,适用于市政和工业两方面。第 8 章介绍了沉淀、澄清浮选和聚结的主题,并让我们重新讨论一些对实现高质量水很重要的化学问题。第 9 章介绍了用于饮用水净化的膜分离技术。第 10 章介绍了两种非常重要的水净化技术,它们不仅应用于饮用水供应和饮料行业,还应用于地下水修复应用。这些技术是离子交换和碳吸附。第 11 章介绍了化学和非化学水消毒技术,这些技术对于提供高质量的饮用水至关重要。最后一章重点介绍了废水处理的固体废物 - 污泥。本章不仅介绍了污泥脱水的物理化学和热方法,还探讨了如何处理这些废物及其对水处理厂运营总成本的影响。污泥与水一样,可以进行调节和消毒,从而将其从需要处置的昂贵废物转变为可以进入二级市场的有用副产品。特别强调的是污染防治技术,这些技术不仅比传统的废物处理方法更环保,而且更具成本效益。我试图将自己在处理水处理项目方面的一些理念融入本书。因此,每一章都试图从第一性原理的角度来涵盖各个主题领域,然后探索案例研究。
酶工程是增强生物催化性能并优化基于蛋白质的材料的强大方法。本研究采用祖先序列重建(ASR),合理设计和过程条件优化,以提高酶稳定性,催化效率和功能特性。探索了四个关键领域:用于手性胺合成,酶促酰胺键的形成,Baeyer-Villiger氧化选择性控制和基于蛋白质的含水材料的跨激酶工程。 为了增强来自硅杆菌pomeroyi(SP -ATA)的ω-转氨酸酶的热稳定性和底物范围,使用ASR来识别稳定突变,从而提高其工业适合性。 为酰胺键的形成,有理设计优化了铜绿假单胞菌N-酰基转移酶(PA AT),并与氯瓜羧酸还原酶还原酶(CAR SR -A)的蛋白质rugosus rugosus rugosus rugosus rugosus rugosus rugosus rugosus rugosus的腺苷酸化结构域相结合。 工程的Y72S/F206N变体显着提高了与药物相关的羧酸的转化率,为化学合成提供了可持续的替代品。 在Baeyer-Villiger氧化中,研究了过程优化以控制区域选择性。 从杆菌和节肢动物物种中工程的Baeyer-Villiger单加氧酶(BVMO)通过增加氧气的可用性,将产品分布转移到了“正常”的内酯。 用于基于蛋白质的吸水材料,patatin诱变改变了带电的氨基酸组成。探索了四个关键领域:用于手性胺合成,酶促酰胺键的形成,Baeyer-Villiger氧化选择性控制和基于蛋白质的含水材料的跨激酶工程。为了增强来自硅杆菌pomeroyi(SP -ATA)的ω-转氨酸酶的热稳定性和底物范围,使用ASR来识别稳定突变,从而提高其工业适合性。为酰胺键的形成,有理设计优化了铜绿假单胞菌N-酰基转移酶(PA AT),并与氯瓜羧酸还原酶还原酶(CAR SR -A)的蛋白质rugosus rugosus rugosus rugosus rugosus rugosus rugosus rugosus rugosus的腺苷酸化结构域相结合。工程的Y72S/F206N变体显着提高了与药物相关的羧酸的转化率,为化学合成提供了可持续的替代品。在Baeyer-Villiger氧化中,研究了过程优化以控制区域选择性。从杆菌和节肢动物物种中工程的Baeyer-Villiger单加氧酶(BVMO)通过增加氧气的可用性,将产品分布转移到了“正常”的内酯。用于基于蛋白质的吸水材料,patatin诱变改变了带电的氨基酸组成。如分子动力学模拟所证明的那样,富含LYS和ASP的变体增加了吸收吸水,这证明了酶工程在可持续吸收材料开发中的潜力。这项研究整合了计算和实验酶工程策略,以改善化学合成和功能性生物材料的生物催化,为工业生物技术和可持续材料科学提供新颖的解决方案。
4帕拉马塔广场,新南威尔士州帕拉马塔街12号,2150 www.dcceew.nsw.gov.au 1锁定包5022,parramatta NSW 2124
300-360°C。 在这些温度下,为了抑制沸腾,HTL过程以1400-2800psig运行。 这些条件低于水的临界点,尽管已经进行了超临界HTL处理。 在加工条件下,进料中的有机材料分解以形成生物油和一些气体(主要是甲烷和二氧化碳)。 转换步骤中的停留时间因进料的性质和过程条件而异,但在10-30分钟内。 迄今为止的测试表明,转换步骤可以在搅拌的储罐反应器或塞流动反应器中执行,其性能之间的差异很小。 在加工压力和温度下,水的奇怪特性是,溶剂特性是从在较低压力和温度下观察到的水的溶剂特性反转。 具体而言,饲料的有机成分降解产生的生物油变得可溶,而无机材料几乎不溶于溶解。 这对过程具有非常有用的含义。 它使无机分数可以在降水步骤中与大部分水和油分开。 一旦油和水冷却,生物油将不再溶于水中。 机油和水以及相关的气体可以在3相分离器中分离。 图2显示了藻类饲料中HTL的试验植物测试的产物。300-360°C。在这些温度下,为了抑制沸腾,HTL过程以1400-2800psig运行。这些条件低于水的临界点,尽管已经进行了超临界HTL处理。在加工条件下,进料中的有机材料分解以形成生物油和一些气体(主要是甲烷和二氧化碳)。转换步骤中的停留时间因进料的性质和过程条件而异,但在10-30分钟内。迄今为止的测试表明,转换步骤可以在搅拌的储罐反应器或塞流动反应器中执行,其性能之间的差异很小。在加工压力和温度下,水的奇怪特性是,溶剂特性是从在较低压力和温度下观察到的水的溶剂特性反转。具体而言,饲料的有机成分降解产生的生物油变得可溶,而无机材料几乎不溶于溶解。这对过程具有非常有用的含义。它使无机分数可以在降水步骤中与大部分水和油分开。一旦油和水冷却,生物油将不再溶于水中。机油和水以及相关的气体可以在3相分离器中分离。图2显示了藻类饲料中HTL的试验植物测试的产物。