b'我们考虑由小型、自主设备组成的网络,这些设备通过无线通信相互通信。在为此类网络设计算法时,最小化能耗是一个重要的考虑因素,因为电池寿命是一种至关重要的有限资源。在发送和侦听消息都会消耗能量的模型中,我们考虑在任意未知拓扑的无线电网络中寻找节点最大匹配的问题。我们提出了一种分布式随机算法,该算法以高概率产生最大匹配。每个节点的最大能量成本为 O (log n )(log \xe2\x88\x86) ,时间复杂度为 O (\xe2\x88\x86log n )。这里 n 是节点数量的任意上限,\xe2\x88\x86是最大度数的任意上限; n 和 \xe2\x88\x86 是我们算法的参数,我们假设它们对所有处理器都是先验已知的。我们注意到,存在一些图族,对于这些图族,我们对能量成本和时间复杂度的界限同时达到多项对数因子的最优,因此任何显著的\xef\xac\x81 改进都需要对网络拓扑做出额外的假设。我们还考虑了相关问题,即为网络中的每个节点分配一个邻居,以便在最终节点发生故障时备份其数据。在这里,一个关键目标是最小化最大负载,定义为分配给单个节点的节点数。我们提出了一种有效的分散式低能耗算法,该算法确定一个邻居分配,其最大负载最多比最优值大一个多项对数 (n) 因子。'
b'我们提出了一系列量子算法,用于计算各种量子熵和距离,包括冯·诺依曼熵、量子 R\xc2\xb4enyi 熵、迹距离和 \xef\xac\x81delity。所提出的算法在低秩情况下的表现明显优于最知名的(甚至是量子的)算法,其中一些算法实现了指数级加速。特别是,对于秩为 r 的 N 维量子态,我们提出的用于计算冯·诺依曼熵、迹距离和 \xef\xac\x81delity(加性误差 \xce\xb5 内)的量子算法的时间复杂度为 \xcb\x9c O r 2 /\xce\xb5 2 、 \xcb\x9c O r 5 /\xce\xb5 6 和 \xcb\x9c O r 6 。 5 /\xce\xb5 7 . 5 1 。相比之下,已知的冯·诺依曼熵和迹距离算法需要量子时间复杂度为 \xe2\x84\xa6( N ) [AISW19,GL20,GHS21],而最著名的 \xef\xac\x81delity 算法需要 \xcb\x9c O r 21 . 5 /\xce\xb5 23 . 5 [WZC + 21]。我们的量子算法的关键思想是将块编码从先前工作中的幺正算子扩展到量子态(即密度算子)。它是通过开发几种方便的技术来操纵量子态并从中提取信息来实现的。特别是,我们基于强大的量子奇异值变换(QSVT)[GSLW19],引入了一种用于密度算子及其(非整数)正幂的特征值变换的新技术。我们的技术相对于现有方法的优势在于,不需要对密度算子进行任何限制;与之形成鲜明对比的是,以前的方法通常需要密度算子的最小非零特征值的下限。此外,我们还提供了一些独立感兴趣的技术,用于(次规范化)密度算子的迹估计、线性组合和特征值阈值投影仪,我们相信这些技术在其他量子算法中会很有用。'
b'in最近的地标结果[Ji等。,arxiv:2001.04383(2020)],显示在允许玩家共享无限维度的量子状态时,近似两人游戏的值是不可决定的。在本文中,我们研究了量子系统的尺寸在t界定时,两人游戏的计算复杂性。更具体地说,我们给出一个半尺寸的尺寸的程序,以实验12(log 2(at) + log(q)log(at)) /\ xcf \ xb5 2来计算附加\ xcf \ xb5-关于具有T \ xc3 \ x97 t -dimum量的两次播放游戏的值的附加值,近似值,该量的量游戏分别。对于固定尺寸t,这在Q中以Q和准多态的多项式缩放在A中,从而改善了先前已知的近似算法,其中最差的运行时保证最充其量是Q和A中的指数。为了证明,我们与量子可分离性问题建立了联系,并采用了改进的多部分量子finetti定理,并具有线性约束,我们通过量子熵不等式得出。
b'摘要。我们提出了用于解决随机子集和实例的新型经典和量子算法。首先,我们改进了 Becker-Coron-Joux 算法 (EUROCRYPT 2011),将 e O 2 0 . 291 n 降低到 e O 2 0 . 283 n,使用更一般的表示,其值在 {\xe2\x88\x92 1 , 0 , 1 , 2 } 中。接下来,我们从几个方向改进了该问题的量子算法的最新技术。通过结合 Howgrave-Graham-Joux 算法 (EUROCRYPT 2010) 和量子搜索,我们设计了一种渐近运行时间为 e O 2 0 的算法。 236 n ,低于 Bernstein、Je\xef\xac\x80ery、Lange 和 Meurer (PQCRYPTO 2013) 提出的基于相同经典算法的量子行走成本。该算法的优势在于使用带有量子随机存取的经典存储器,而之前已知的算法使用量子行走框架,需要带有量子随机存取的量子存储器。我们还提出了用于子集和的新量子行走,其表现优于 Helm 和 May (TQC 2018) 给出的先前最佳时间复杂度 e O 2 0 . 226 n 。我们结合新技术达到时间 e O 2 0 . 216 n 。这个时间取决于 Helm 和 May 形式化的量子行走更新启发式方法,这也是之前的算法所必需的。我们展示了如何部分克服这种启发式方法,并获得了一个量子时间为 e O 2 0 的算法。 218 n 只需要标准的经典子集和启发式方法。'
b“极值图论的一个核心问题是确定给定图 H 在 \xef\xac\x81x 大小的图中诱导副本的最大数量。这个问题最早由 Pippenger 和 Golumbic [13] 研究,近年来已成为广泛研究的主题 [2, 3, 7, 8, 11, 18]。本文重点关注有向图的类似问题。准确地说,设 H 是有向图。有向图 G 中 H 的诱导密度,表示为 i ( H, G ),是 G 中 H 的诱导副本数量除以 | V ( G ) | | V ( H ) | 。对于整数 n ,设 i ( H, n ) 为所有 n 顶点有向图 G 中 i ( H, G ) 的最大值。H 的诱导性定义为为 i ( H ) = lim n \xe2\x86\x92\xe2\x88\x9e i ( H, n )。当 i ( H, n ) 对于 n \xe2\x89\xa5 2 递减时,此极限存在。只有极少数有向图的可诱导性是已知的。一类重要的例子是有向星号。对于非负整数 k 和 \xe2\x84\x93 ,让有向星号 S k,\xe2\x84\x93 为通过对具有 k + \xe2\x84\x93 叶子的星号的边进行有向图,使得中心具有出度 k 和入度 \xe2\x84\x93 。有向星形是所有边都具有相同方向的定向星形,即星形 S k,\xe2\x84\x93 ,使得 k = 0 或 \xe2\x84\x93 = 0。S 2 , 0 和 S 3 , 0 的可诱导性由 Falgas-Ravry 和 Vaughan [5] 确定。为了解决 [5] 中的一个猜想,Huang [10] 扩展了他们的结果,确定了对所有 k \xe2\x89\xa5 2 的 S k, 0 的可诱导性,表明它是通过对入度为 0 的部分进行不平衡的弧爆破而渐近获得的。注意,由于任何有向图的可诱导性等于通过反转所有弧得到的有向图的可诱导性,因此可以考虑有向星号 S k,\xe2\x84\x93 ,使得 k \xe2\x89\xa5 \xe2\x84\x93 。特别地,Huang 的结果还确定了对所有 \xe2\x84\x93 的 S 0 ,\xe2\x84\x93 的可诱导性。 [10] 的结果未涵盖的最小定向星是 S 1 , 1 ,即三个顶点上的有向路径。Thomass\xc2\xb4e [16,猜想 6.32] 猜想 i ( S 1 , 1 ) = 2 / 5,这是通过四个顶点上的有向环的迭代爆炸获得的。