SIAMESE(带能源系统模拟器的简化综合评估模型)是一种复杂度较低的 IAM,它考虑到经济增长和能源消耗之间的复杂相互作用,在国家或州一级提供成本最优的排放路径(Sferra 等人,2018b)。在缩小给定模型(例如 IEA/ETP 2017)的能源部门结果的同时,SIAMESE 考虑了一套符合“中间路线”社会经济故事情节的连贯假设,例如(Dellink、Chateau、Lanzi 和 Magné,2017;Fricko、Havlik、Rogelj、Klimont 和 Gusti,2017)。该故事情节依赖于国家(或州)一级技术发展和 GDP 增长的历史趋势的延续。同时,在分配一个国家或地区需要为《巴黎协定》的长期目标做出多少全球减排贡献时,SIAMESE 具有成本优化的视角。在国家层面使用 IAM 基准面临着将区域结果(在 IPCC 1.5 数据库中报告为 R5ASIA、R5OECD+EU、R5MAF、R5LAM 和 R5REF)分配到国家层面的挑战。SIAMESE 整合了各种国家数据来源来完成这项任务。它使用报告的各个情景的国家预测,包括预测时间范围内的人口和 GDP 发展情况以及分析基准年的当前能源使用情况。当前可用的 IAM 路径使用 2010 年作为基准年,SIAMESE 使用来自 2015 年的最新数据,因此整合了原始 IAM 模型路径中未包含的国家的国家发展情况。 SIAMESE 方法可应用于整体经济(例如缩减总体一次能源消耗和排放),或适用于单个行业(例如运输、电力等)。SIAMESE 将原始 IAM 路径(例如,在此情景下从 2010 年开始的 OECD 地区路径)和特定国家观察到的能源消耗和排放数据作为输入。基于 SIAMESE 模拟,我们计算出特定国家符合《巴黎协定》的能源预测。降尺度的局限性体现在驱动情景中,在这种情况下,该情景在多个领域表现薄弱,包括工业脱碳、交通电气化以及可再生氢作为能源载体的成本。因此,我们将 SIAMESE 模拟用于多种情景和 IAM 模型,以纳入所有可能的兼容路径。可以使用排放因子处理每种情景中产生的燃料组合,以得出符合《巴黎协定》的预算、排放强度和其他相关指标。不确定性评估
总体而言,过去 30 年来,日本的排放量以年均 0.1% 的增长率小幅增长。⁸ 全球经济衰退导致排放量从 2008 年到 2011 年稳步下降。然而,2011 年福岛第一核电站发生悲惨事故后,全国各地的核电站关闭,煤炭、天然气和石油发电取代核电站,排放量大幅增长。结果,以化石燃料为基础的火力发电从 2010 年日本总发电量的 65% 增加到 2012 年的 89%。⁹ 2016 年,日本排放了 1,305 百万吨二氧化碳当量,成为继中国、美国、印度和俄罗斯之后世界第五大排放国。10
来自爱尔兰跨国欧洲TGE(跨国授予欧洲)的是欧洲基础和协会的合作伙伴关系。 它允许捐助者 - 个人和公司 - 在TGE合作伙伴国家之一的财政居民,可以支持其他成员国的慈善组织,同时受益于其居住国立法(www.transnationalgiving.eu)提供的税收优势。 由于最近的法律和财政变化,目前不可能从爱尔兰向巴黎脑研究所捐款,该研究所有资格根据爱尔兰法律获得税收福利。 如果您是希望支持巴黎脑研究所的爱尔兰居民,请联系:是欧洲基础和协会的合作伙伴关系。它允许捐助者 - 个人和公司 - 在TGE合作伙伴国家之一的财政居民,可以支持其他成员国的慈善组织,同时受益于其居住国立法(www.transnationalgiving.eu)提供的税收优势。由于最近的法律和财政变化,目前不可能从爱尔兰向巴黎脑研究所捐款,该研究所有资格根据爱尔兰法律获得税收福利。如果您是希望支持巴黎脑研究所的爱尔兰居民,请联系:
JCM项目的减排包括当前政策可以实现的排放减少。这种减少是在BAU和参考排放之间计算的,并将反映在东道国的库存中,从而有助于其NDC(不是以JCM信用颁发)将减少的排放减少定义为参考排放和项目排放之间的差异。考虑到当前政策可以实现的排放减少,就可以确定参考排放。随着东道国剩余的JCM信用额的额外减少,将反映在东道国的库存中,有助于实现东道国的NDC。日本获得并用于日本NDC的JCM积分是根据日本对JCM项目的贡献(例如财务,技术和运营贡献)计算的。
在2023年12月,我们发布了我们的准备框架,这是一份活着的文件,可指导我们最先进的AI模型的安全部署。基于科学驱动的评估,迭代部署和持续改进,该框架塑造了我们评估和减轻边境风险的方法。在过去的一年中,我们收集了来自现实世界测试,专家反馈和新兴研究的见解,并且我们正在积极地研究了我们计划在今年晚些时候发布的修订版。此更新将反映出我们的风险阈值,缓解策略等的改进。当前的框架确定并评估了几个类别的风险,包括网络安全性,化学,生物学,放射学和核(CBRN)威胁,说服力,自主权以及潜在的“未知未知”,以及结合威胁建模,特殊的能力启发,外部专家评论,以及更糟糕的情况,以实现风景。通过动态记分卡评估每个风险,该动态记分卡衡量采用安全措施之前和之后的结果。这不仅使我们能够在最坏情况下了解新兴威胁的严重性,而且还可以验证我们的干预措施是否在任何模型释放之前将风险降低到可接受的水平。为了解决这些风险,我们使用各种缓解策略。遏制策略着重于限制与财产相关的风险,例如隔间化和限制对受信任用户的访问。部署缓解措施包括诸如拒绝,数据修订,使用策略,用法监控,执行和警告合作伙伴之类的措施。当前,只能部署具有“媒介”或以下的减速后得分的模型。同样,只能继续开发“高”或以下的降低后评分的模型。我们还建立了一种治理结构来维护程序承诺并确保有效的风险管理。这包括我们的准备团队,该团队的重点是识别,预测和量化边境能力以及潜在的灾难性风险;我们的安全和一致性研究团队确保了AI模型的安全性,鲁棒性和可靠性及其在现实世界中的部署,以及研究可扩展的,可信赖的AI系统,这些系统始终如一地遵循人类意图。我们的平台安全团队定义了我们的用法
系统安全性,DevOps,确保IT基础架构,密码学,身份管理和事件回应。此外,它还包括有关网络安全标准,规范和方法论的讨论。>通过会议,现场访问和项目,学生会与网络安全专业人员会面,从而建立他们的网络。>课程在ECE的校园举行,位于巴黎的中央位于标志性地标,例如Eiffel Tower和Seine River。>学生在网络安全世界中获得了完全沉浸式的体验。>学生以他们在整个学年获得的理论知识为基础,并与网络安全高级管理人员讨论他们的分析和建议。>该计划的高潮后,学生可能会与BAC+5级文凭授予,并由著名的MSC - Grandesécoles会议认可的理学硕士 - 科学硕士标签。>学生可以通过PMI获得国际认证CAPM(项目管理认证助理)。
宏观量子现象:6讲座:30H教程:20H描述本课程提出了物质量子物理学的壮观宏观表现的介绍。在第一部分中,我们将介绍超导性,超流量和冷凝物的物理学。在非常低的温度下,各种机制可以导致宏观集体量子状态,这些量子具有令人惊讶的特性,例如零电阻,磁性悬浮或粘度没有粘度。我们将展示在非常不同的系统(例如玻色子气,液氦或金属)中,常见现象如何产生这些特性。在课程的第二部分中,我们将展示如何在介观量表上修改常规的电性能,其中量子效应确实起着重要作用,并且可能会产生宏观的后果。最后,该课程的最后一部分将专门讨论量子力学在量子通信和量子计算中的重要现代应用的简介,在许多学科(例如信息理论,数学和材料科学)之间,在量子通信和量子计算中是非常活跃的领域。本课程将基于该领域的许多最新发现,这是当今凝聚态物理学中最活跃和创新的领域之一。讲师Charis Quay,朱利安·巴塞特教学大纲第1章:超导性,超级流体和凝结玻璃体凝结和超流体超导性的超导性:宏观方面:显微镜理论,热力学理论,热力学第2章:介质物理学的电导率和电导式式磁态,梅斯式式磁构层概念性趋于式电流式趋于电流式的电流式,梅斯特式趋于电流式的电流式趋于电流式的电流效应。戒指约瑟夫森效应第3章:量子信息简介量子信息:历史,目标,观点量子位和bloch球体量子计算的简单示例量子量表和EPR paradox
要检查自下而上的观点的一致性,我们探索如果每个国家都与自下而上的国家视角保持一致,但不超过此水平,将会发生什么。我们发现,全球电力部门的排放仍将属于选定的IAM途径的四分位间范围内,但是在2020 - 2050年内,电力部门的累积CO 2排放量将增加到〜16 GTCO 2(有关更多详细信息,请参见方法报告,请参阅方法文档报告)。这大约是截至2020年剩余的1.5°C剩余碳预算的4%(IPCC 2023)。这使我们充满信心,两种观点产生的所有基准都与1.5°C保持一致,但突出了与可能在可能的情况下与基准测试范围更高的国家保持一致的国家的价值。