由于金属箔表面粗糙而导致的导体损耗对为 10+ Gbps 网络设计的背板走线上的高速信号传播有显著影响。本文提出了一种评估这些影响(包括信号衰减和传播相速度)的实用方法。假设周期性结构来模拟粗糙度轮廓的形态。从光栅表面波传播常数中提取等效表面阻抗来模拟粗糙度。因此,可以在传统的衰减常数公式中使用这种修改后的表面阻抗来计算实际导体损耗。使用全波仿真工具和测量验证了该方法,并表明能够在 0.2 dB/m 相对误差内提供可靠的结果。
许可: 本作品已获得 Creative Commons Attribution 4.0 International 许可。阅读完整许可
推荐组装说明 1. 旁路电容应为 100 pF(大约)陶瓷(单层),放置位置距放大器不超过 30 mil。 2. 在输入和输出上使用 <10 mil(长)x 3 x 0.5 mil 的带状线可获得最佳性能。 3. 必须按照指示从两侧偏置部件。 4. 如果漏极电源线干净,则不需要 0.1uF、50V 电容器。 如果要使用设备的漏极脉冲,请勿使用 0.1uF、50V 电容器。 安装过程
简介 鉴于对满足射频系统要求的需求日益增加,作为关键组件的循环器已成为研究的主题。传统循环器通常基于采用带状线或微带技术设计的 Y 型结形状。带状线循环器易于集成且损耗低。这种循环器拓扑结构可以通过同轴连接器连接,采用 Drop-in 技术实现或内置于表面贴装器件 (SMD)。尽管成本较高,但同轴循环器具有比其他产品更高的 EMC 屏蔽和功率处理能力。此外,Drop-in 设备处理的功率较少,并且没有 EMC 屏蔽。最后,SMD 循环器的功率处理能力低于同轴循环器,但 EMC 屏蔽比 Drop-in 更好。面对日益增长的小型化、集成化和降低成本的需求,LTCC(低温共烧陶瓷)技术是应对这些挑战的有希望的候选技术。LTCC 技术是一种通过多层结构封装集成电路的技术。它由堆叠胶带组成,可防止结点出现气隙,并降低高功率空间应用的多重击穿风险。在过去的几年中,许多已发表的研究都集中在 LTCC 循环器的设计上 [1]-[2]。然而,它们大多数都是理论上的,只有少数专注于工业用途 [3]。因此,Exens-Solutions 与 CNES、Thales TRT 和 IMT Atlantique 合作,提出了 LTCC 技术来开发用于保护有源天线的 K 波段循环器。该循环器由 Exens-Solutions 根据与 CNES 商定的规格设计。IMT Atlantique 负责循环器的制造过程。铁氧体和电介质材料带由 Thales TRT 开发。因此,本文分为四个部分。第一部分介绍 LTCC 循环器规格并详细介绍材料特性。第二部分描述了建立设计规则的试运行。第三部分讨论了 LTCC 循环器的设计步骤和模拟。制造步骤和测量结果在最后一节中报告。LTCC 环行器规格初步提出的拓扑结构采用带状线拓扑结构来设计封装在封装中的 LTCC 环行器。这种拓扑结构的优点是可以缩小环行器体积并避免金属路径受到任何损坏。如图 1 所示,在 LTCC 结构中添加了信号和接地通孔,以确保其与 SMD 表面的互连。
用于控制微带线馈电设计的参数主要包括带状线长度和宽度变化以及贴片的长度和宽度。馈线控制天线的回波损耗。为了提高效率,回波损耗应该较小。端口尺寸控制总带宽。为了增加带宽,端口也应该与馈线匹配。工作频带由天线的高度控制,最后贴片控制中心频率。该技术提供 0.1GHz 带宽,从 -15dB 开始考虑。该设计的回波损耗图如图 7 所示。匹配主要通过控制贴片的尺寸来实现。回波损耗图给出中心频率 12.7 GHz 处的 - 21.2dB。
开发了两种检测板变体: - 对于 XY 坐标检测 - 两层平行带状线允许检测检测到的辐射的形状。这种方法允许制造大型检测板。整个过程可以仅使用丝网印刷方法进行,这是一种非常便宜的解决方案。或者,多层 LTCC 方法可以提高分辨率。 - 对于偏振测量 - 一个小的检测区域由大约 300 μm 宽的电极组成,每个电极都与读出系统有单独的连接,从而增强了功能。它需要 LTCC 中可以获得的高互连密度,超出了 PCB 的能力。
抽象堆积过程是一种高效的方法,用于微型化和高密度整合印刷电路板。以及对具有高功能的电子设备的高传输速度的需求增加,在此类设备中安装了用半导体安装的包装基板以减少传输损失。我们的绝缘材料用于半添加过程(SAP),其介电损失切线较低,在踏板后光滑的树脂表面和良好的绝缘可靠性。实际上,使用我们的材料测量了带状线基板和CU表面粗糙度对传输损失影响的传输损失。此外,还引入了低介电造型膜(CTE)和Low Young的模量。
在系统级最小化环路电感是优化整体系统性能的关键杠杆。与基于串联单开关模块的解决方案相比,在单个封装内实现双向开关可降低三级系统中的寄生电感。PrimePACK 3+ 封装具有四个独立的模块内部母线,可同时实现低寄生电感和高载流能力。此概念的交错电源端子设计提供了降低整体系统电感的可能性。由于每个母线对形成带状线导体,因此杂散电感会减小。图 3 显示了三模块 (2:1) 相的模块布置和可能的直流母线结构。图 3A 的中心说明了 CC 模块的电源端子布局。
摘要。超导谐振器具有高品质因数,因此存储能量的衰减时间更长,因此可提供卓越的性能。这些超导谐振器的一个新兴应用是量子计算和量子信息科学,它使我们能够探索和深化对物质的理解,而这些发现可能无法通过传统计算和技术进行探索。量子处理架构使用在微波范围内工作的谐振器和互连电路,以及超导带状线技术和低噪声电子设备进行切换和通信。可以通过将这些设备嵌入三维谐振器中来延长相干时间,从而提高这些设备的性能,从而通过降低错误率并在量子态衰减之前允许更多操作(计算)来提高设备的实用性。在这里,我们简要回顾了当前用于量子计算的微波技术以及提高量子比特相干时间的进展。