我们对大脑的理解和评估大脑健康的能力在很大程度上依赖于磁共振成像 (MRI) 和量子技术,这些技术依赖于物质或辐射的量子特性,如核自旋、纠缠或单个量子的检测。这些技术正在经历资金和研究的复兴,并导致了近年来一些非常令人兴奋的发展,例如,仅根据大脑活动和 fMRI 数据重建图像、视频 [1、2] 和整个句子的语义 [3]。本观点的目的是简要概述一些量子技术,这些技术可能会对这些读脑方法的可穿戴性、精度和成本等产生影响。磁共振成像 (MRI) 是一种非侵入性方法,它依赖于量子效应,带电粒子可以自旋,从而与外部磁场相互作用,提供有关自旋和我们正在探测的物质的构象的信息。一种称为功能性磁共振成像 (fMRI) 的磁共振成像技术通过检测脑内血流的微小变化来测量脑活动,现在可以实现亚毫米级的分辨率,尽管通常存在 5 到 10 秒的时间延迟,这是因为它测量的是血氧水平依赖性 (BOLD) 信号。另一种称为脑磁图 (MEG) 的非侵入性技术则测量细胞水平上随时间变化的电压信号产生的磁场。这里使用的量子技术不在于信号本身的物理特性,而在于检测,这通常是使用超导量子干涉装置 (SQUID) 的极高灵敏度来实现的。与 fMRI 相比,MEG 的空间分辨率较低,为 3 毫米量级,但没有 BOLD 时间延迟。显然,使用 fMRI 和 MEG 对脑部进行更精细的成像可以更深入地了解脑部的运作方式。然而,fMRI 的成本相对较高,严重限制了其普及性,实验范围也受到限制,因为躺在 MRI 扫描仪中并不是动物或人类操作的“自然”环境。基于 SQUID 的 MEG 可穿戴性略高,但仍然很昂贵,主要是因为实验需要放在特殊的房间内,以保护仪器不受干扰。
目的:使用小体积电离室进行扁平过滤器(FF)和扁平过滤滤器(FFF)varian Truebeam stx线性加速器的扁平过滤器(FFF)横梁,研究小型和大型电离室的离子重组(K S)和极性校正因子(KPOL)。材料和方法:所有读数均以100厘米源到DMAX的表面距离(SSD)和10厘米深度的PTWBeamScan®水幻影进行测量,为6、10、10、15、6FFF和10FFF MEGA电压光光束,平方场的最大剂量速率为0.5×0.5cm2至30×30 cm2。分别雇用了两个离子腔室,例如PTW Semiflex 3d 31121和农民室30013,分别为0.07cc和0.6cc。根据国际原子能局技术报告系列(IAEA TRS 398)的第398号协议,从读数中计算了校正因子。用“两压方法”(TVM)获得的离子重组值用1/v对1/Q曲线(Jaffé-plot)验证了所有束能。结果:从结果来看,离子重组校正因子(K S)从未超过1.032,此外,Jaffé-Plot的结果与TVM值非常吻合(高达0.3%),除了方形0.5×0.5×0.5cm 2和1×1cm 2(最高8%)。KS值完全独立于所有光束能的场大小。KPOL值随场大小而独立于2×2cm 2的平方场差异,在2×2cm 2至10×10cm 2之间的平方场2×2cm 2中,绘图几乎显示了所有辐射条件的直线。对于所有平方场(0.5×0.5cm 2和1×1cm 2除外),FFF梁的K S和KPOL值分别差异为最大0.6%和0.1%。结论:小场剂量计的饱和电压大于剂量计的工作电压。小场的KS和KPOL值与标准字段(参考字段)不同。使用标准“两压方法”确定的KS可以充分考虑高剂量率FFF梁的高剂量率FFF梁。从FFF梁获得的结果不会显着偏离扁平的梁。平方场的不适当读数0.5×0.5cm 2和1.0×1.0cm 2可能是由于缺乏剂量计响应,这是由于缺乏侧向带电粒子平衡和腔室平均效果的结果。
未来月球和火星深空任务的主要担忧之一是宇航员的放射风险增加。他们将暴露在来自天然源的增强电离辐射下,如银河宇宙辐射、来自太阳的辐射(包括太阳粒子事件(SPE)中的高能带电粒子)以及地球周围的辐射带(1、2)。据估计,长期火星任务的累积辐射剂量将达到 1 Sv 或更多,具体取决于持续时间、屏蔽和太阳周期时间(3)。虽然这是一种罕见事件,但 SPE 粒子可进一步将其剂量增加到高达 10 Gy 的严重水平(4),这远远超出了辐射工作人员的剂量限值(5),并可能诱发严重的急性确定性效应,如造血功能退化(6)、生殖能力下降(7)、白内障(8),甚至死于急性放射综合征。出于对这些问题的考虑,美国国家航空航天局 (NASA) 和日本宇宙航空研究开发机构 (JAXA) 等太空机构制定了剂量限制标准,以将宇航员的空间辐射暴露控制在可接受的水平以下。表 1 列出了 NASA 之前的职业剂量限值 ( 1 ) 和 JAXA ( 9 ) 参与低地球轨道任务的宇航员的现行剂量限值。NASA 的限制旨在将宇航员所患癌症的风险增加限制在 3% 以内;更准确地说,基于对风险预测的不确定性的统计评估,NASA 宇航员因暴露而导致致命癌症死亡的风险限值不得超过 3% ( 10 ),置信度为 95%。由于单位剂量癌症风险通常会随着年龄的增长而增加 ( 5 , 11 , 12 ),因此老年宇航员的剂量限值要高于年轻宇航员。此外,在同一年龄段,女性宇航员的限值高于男性,反映出乳房对放射线的敏感性明显增高(5,11,12)。从表1中的数值可以看出,这些剂量限制标准使得年龄较大的男性宇航员比年轻或女性宇航员有更多的太空旅行机会,这可视为一个不平等的问题。随后,美国国家科学院(NAS)近期建议,应用基于中位数估计的600 mSv的与年龄和性别无关的有效剂量职业限值,以使35岁女性的癌症死亡率达到3%(13),取消了对年龄和性别的特定限制。该建议有望为不同年龄段的男性/女性宇航员提供同等的飞行机会
未来月球和火星深空任务的主要担忧之一是宇航员的放射风险增加。他们将暴露在来自天然源的增强电离辐射下,如银河宇宙辐射、来自太阳的辐射(包括太阳粒子事件(SPE)中的高能带电粒子)以及地球周围的辐射带(1、2)。据估计,长期火星任务的累积辐射剂量将达到 1 Sv 或更多,具体取决于持续时间、屏蔽和太阳周期时间(3)。虽然这是一种罕见事件,但 SPE 粒子可进一步将其剂量增加到高达 10 Gy 的严重水平(4),这远远超出了辐射工作人员的剂量限值(5),并可能诱发严重的急性确定性效应,如造血功能退化(6)、生殖能力下降(7)、白内障(8),甚至死于急性放射综合征。出于对这些问题的考虑,美国国家航空航天局 (NASA) 和日本宇宙航空研究开发机构 (JAXA) 等太空机构制定了剂量限制标准,以将宇航员的空间辐射暴露控制在可接受的水平以下。表 1 列出了 NASA 之前的职业剂量限值 ( 1 ) 和 JAXA ( 9 ) 参与低地球轨道任务的宇航员的现行剂量限值。NASA 的限制旨在将宇航员所患癌症的风险增加限制在 3% 以内;更准确地说,基于对风险预测的不确定性的统计评估,NASA 宇航员因暴露而导致致命癌症死亡的风险限值不得超过 3% ( 10 ),置信度为 95%。由于单位剂量癌症风险通常会随着年龄的增长而增加 ( 5 , 11 , 12 ),因此老年宇航员的剂量限值要高于年轻宇航员。此外,在同一年龄段,女性宇航员的限值高于男性,反映出乳房对放射线的敏感性明显增高(5,11,12)。从表1中的数值可以看出,这些剂量限制标准使得年龄较大的男性宇航员比年轻或女性宇航员有更多的太空旅行机会,这可视为一个不平等的问题。随后,美国国家科学院(NAS)近期建议,应用基于中位数估计的600 mSv的与年龄和性别无关的有效剂量职业限值,以使35岁女性的癌症死亡率达到3%(13),取消了对年龄和性别的特定限制。该建议有望为不同年龄段的男性/女性宇航员提供同等的飞行机会
1 阿米蒂空间科学与技术研究所学生 2 阿米蒂空间科学与技术研究所教授 摘要 电子回旋共振 (ECR) 推进器正成为一种有前途的高效航天器推进技术,利用电子回旋共振现象产生推力。这篇全面的评论综合了该领域的关键进步、设计策略和持续挑战。ECR 推进器通过使用微波能量加热磁化等离子体中的电子来运行,从而产生高电离率和有利的推力功率比。与传统推进系统不同,ECR 推进器具有显着优势,包括更高的比冲和更低的燃料消耗,使其成为长时间太空任务的理想选择。本文深入探讨了 ECR 推进器设计的各个关键方面,例如天线配置、气体注入方法和磁场优化,重点介绍了这些因素如何影响整体性能。它还讨论了解决效率、寿命和功率传输等问题的最新实验结果和理论模型。此外,该评论还探讨了未来的发展方向,强调需要在材料和自动阻抗匹配方面取得进步,以提高可靠性和推力产生能力。通过这一分析,本文旨在全面了解 ECR 推力器,强调其成为未来太空探索有竞争力和可持续选择的潜力。关键词:电子回旋共振 (ECR) 推力器、等离子推进、电力推进技术、微波等离子体加速、推力器中的磁场配置、离子加速简介电子回旋共振 (ECR) 等离子推力器于 20 世纪 60 年代首次推出,利用电场和磁场加速等离子体,为航天器提供推力。与传统推力器不同,ECR 推力器无需电网,只需要一个电源,这使得它们在太空推进领域具有潜在的颠覆性作用 [4,10,14]。最近的进展主要集中在解决过去的实验限制、提高测量精度和优化各种推力器参数。等离子体物理学涵盖了在电离气体中观察到的各种现象,其应用范围涵盖自然现象、聚变研究和工业过程[22,30,35]。尽管存在这种多样性,但等离子体的本质可以描述为带电粒子和中性粒子在电、磁和电磁相互作用影响下的集体行为。在工业等离子体社区中,等离子推力器社区专注于开发用于
创建比常规方法效果更好的量子算法(例如大整数分解)使量子计算成为现代物理学的重点。在物理构建量子计算的各种方法中,Cirac 和 Zoller [ 1 ] 提出的离子阱方法尤为有前景。离子阱的有效性已通过大量实验得到证明,证实了其在实际量子计算中的潜力。离子阱是一种利用电场和/或磁场将带电粒子(离子)限制在特定空间区域的装置。这种限制允许对离子进行操纵和分析。事实上,精确控制单个离子的能力可以实现精确的量子操作,而捕获离子的长相干时间可确保复杂计算期间的稳定性 [ 2 ]。离子阱系统的可扩展性进一步使得构建更大的量子系统成为可能,高保真量子门可最大程度地减少操作错误。此外,离子阱有助于产生纠缠态,这对于量子通信和分布式计算至关重要。在这种情况下,离子阱中的势通常用谐振子来近似,这为分析离子的运动和相互作用提供了一个完善的框架,这对于实现量子门和其他必要的操作至关重要 [3]。阱内离子之间的相互作用(包括光学或电磁谐振器中的离子)可以建模为耦合的谐振子,这对于控制量子态和执行纠缠等量子操作至关重要。这些相互作用可以进入各种耦合状态——弱、强和超强——每一种耦合状态都在提高量子计算机的性能和可扩展性方面发挥着关键作用 [4,5]。在量子计算领域,特别是在囚禁离子系统的哈密顿动力学框架内,对各种量子度量的细致理解至关重要。例如,纠缠熵测量子系统之间的量子相关性,指示共享的信息量。这对于量子算法和协议(如纠错和加密)非常重要。另一个指标是计算复杂度,它评估量子计算所需的资源,包括量子比特的数量和量子电路的深度。这反映了量子操作的难度和算法的效率。高纠缠熵通常会导致计算复杂度增加,因为维持纠缠需要更复杂、更深的电路。另一方面,通过按顺序排列量子门,可以形成高效的量子算法,使量子计算机能够解决超出传统计算机能力的问题 1 。量子门与波函数相互作用的研究很重要;将参考状态 | ψ R ⟩ 转换为目标状态 | ψ T ⟩ 需要应用一个幺正变换 U ,这是通过一系列通用门实现的。优化这些门序列至关重要,因为通往同一目标状态的可能路径是无限的。电路深度,即连续操作的数量,与计算复杂度有关。
人的一生中,大约有 4% - 5% 的人会患上结直肠癌 (CRC),其中高达 20% 的病例在初次诊断时已有远处转移 (1,2)。肺是 CRC 最常见的转移部位之一,约有 27% 的 CRC 患者患有该病 (3)。患有远处疾病的患者的 5 年生存率约为 12% (4)。虽然手术是治疗肺转移的常见选择,但消融已成为一种更好的选择,因为它可以在切除肿瘤的同时保留更多的肺组织和功能 (5)。另一方面,立体定向消融放射治疗 (SABR) 或热消融已成为局部治疗肺转移的最佳方法 (6)。微波消融 (MWA) 是一种局部热消融,通过带电粒子和极性分子的运动刺激凝固性坏死,目前是 CRC 肝和肺转移的主要治疗方法(6)。与射频消融 (RFA) 相比,微波消融 (MWA) 有几个优势,例如对较大的肿瘤加热效果更好,加热速度更快、效率更高,从而降低了对热沉效应的敏感性。MWA 特别适用于阻抗较高的组织,包括肺和骨骼,以及含水量高的组织,如实体器官和肿瘤(7)。肺微波射频 (LUMIRA) 随机试验显示,与 RFA 治疗相比,MWA 可减少术中疼痛并显著缩小肿瘤体积(8)。回顾性分析表明,经皮 MWA 是一种治疗肺恶性肿瘤的潜在安全有效的方法,并且可以提高不适合手术的患者的生存率(9)。远端效应是放射治疗中的一种现象,其特征是放射范围之外的肿瘤体积缩小。Mole 首先描述了它并发现在对原发性肿瘤或转移性肿瘤进行放射治疗后,未经治疗的肿瘤体积会缩小(10)。越来越多的证据表明,局部放射治疗可刺激全身抗肿瘤作用,远端未受照射部位的肿瘤会消退,即放射治疗的远端效应(11,12)。冷冻消融的远端效应也已被证明,在对原发性前列腺癌进行冷冻消融后,脊柱、肺和锁骨上淋巴结等远处转移灶会消失(13)。其他研究表明,冷冻消融可刺激强烈而复杂的免疫反应,并激活先天性和适应性免疫(14)。相反,关于微波消融的远端效应的报道很少。在临床工作中,我们团队发现一例难治性子宫内膜癌多发性肺转移患者在接受微波消融治疗后,出现了远隔效应,即一侧肺转移灶接受微波消融治疗,而其他肺转移灶消失,提示 MWA 刺激了完美的远隔效应 ( 15 )。我们还在另一例肺腺癌患者中观察到了远隔效应,该患者双肺多发转移。右肺两个结节用 MWA 治疗,2 个月的 Camrelizumab 治疗后双肺所有结节均消失,证实 MWA 和 PD-1 抑制剂联合治疗刺激了远隔效应 ( 16 )。然而,并非所有 CRC 患者
本注释涵盖了 H 节的基本原理和一般使用说明。 (I) H 节涵盖: (a) 基本电气元件,涵盖所有电气装置和设备和电路的一般机械结构,包括将各种基本元件组装成所谓的印刷电路,并在一定程度上涵盖这些元件的制造(当其他地方未涵盖时); (b) 发电,涵盖电力的产生、转换和分配以及相应设备的控制; (c) 应用电力,涵盖: (i) 一般应用技术,即电加热和电照明电路的技术; (ii) 一些特殊应用技术,无论是严格意义上的电气技术还是电子技术,这些技术未包含在分类表的其他部分中,包括: (1) 电光源,包括激光器; (2) 电 X 射线技术; (3) 电等离子体技术和带电粒子或中子的产生和加速; (d) 基本电子电路及其控制; (e) 无线电或电通信技术; (f) 使用特定材料制造所述物品或元件。在这方面,应参考指南第 88 至 90 段。(II) 本节适用以下一般规则: (a) 除上述 I(c) 中所述的例外情况外,归入分类表 H 节以外的某一节中特定操作、方法、设备、物体或物品所特有的任何电气方面或部分始终归入该操作、方法、设备、物体或物品的小类中。如果在类别一级提出了类似性质的技术主题的共同特征,则电气方面或部分与操作、方法、设备、物体或物品一起归入完全涵盖该技术主题的一般电气应用的小类中; (b) 上述 (a) 中提到的电气应用,无论是一般应用还是特殊应用,包括: (i) A61 类的治疗方法和设备; (ii) B01 类和 B03 类以及 B23K 小类中各种实验室或工业操作中使用的电气过程和设备; (iii) B 部“运输”小类中一般车辆和特殊车辆的电力供应、电力推进和电力照明; (iv) F02P 小类中内燃机的电点火系统以及 F23Q 小类中一般燃烧设备的电点火系统; (v) G 部的整个电气部分,即测量设备,包括用于测量电变量、检查、发信号和计算的装置。该节中的电通常被视为一种手段,而不是目的本身; (c) 所有电应用,无论是一般应用还是特殊应用,都假定“基本电”方面出现在 H 节(见上文 I(a))中,涉及它们所包含的电“基本元件”。此规则也适用于上文 I(c) 中提到的应用电,它出现在 H 节本身中。(III) 在本节中,出现以下特殊情况: (a) 在 H 节以外的各节所涵盖的一般应用中,值得注意的是,一般电加热由子类 F24D 或 F24H 或类 F27 涵盖,而一般电照明部分由类 F21 涵盖,因为在 H 节(见上文 I(c))中,H05B 中有地方涵盖相同的技术主题; (b) 在上述 (a) 项下提到的两种情况下,F 节中涉及相应主题的子类首先主要涵盖设备或装置的整个机械方面,而电气方面则由子类 H05B 涵盖; (c) 在照明的情况下,机械方面应涵盖各种电气元件的材料布置,即它们相对于彼此的几何或物理位置;此方面由子类 F21V 涵盖,元件本身和初级电路仍属于 H 节。当电光源与不同类型的光源组合时,情况也是如此。这些由子类 H05B 涵盖,而它们组合构成的物理布置由 F21 类的各个子类涵盖; (d) 对于加热,子类 H05B 不仅涵盖电气元件和电路设计本身,还涵盖其布置的电气方面,如果这些涉及一般应用的情况;电炉被视为此类。炉内电气元件的物理配置由 F 节涵盖。如果将其与与焊接相关的 B23K 子类涵盖的电焊电路进行比较,可以看出电加热不受上述 II 中所述的一般规则的涵盖。