rs-class.org › 行业 › getIndustry 操作压力,MPa -1,6;。管材:不锈钢、白铜、铜;。翅片材料:铜、铝;。翅片厚度,mm:0,15 至...
具有高计算性能的 CPU 的发热问题一直是一个非常严重的问题,会降低其性能。为了确保 CPU 发挥最大潜能,必须将其温度保持在 80°C 以下。由散热器和风扇组成的强制对流冷却器被认为是满足 CPU 工作温度要求以确保其最大性能的最有效方法。使用计算流体动力学 (CFD) 数值方法和拓扑优化(使用 ANSYS Mechanical 和 ANSYS Fluent)开发了一款 CPU 冷却器的散热器设计,该设计搭配了气流速度为 80 立方英尺/分钟 (CFM) 的风扇,适用于在 25°C 环境温度下工作时最大发热量为 380 瓦的 CPU。对各种翅片轮廓、翅片排列、翅片数量和散热器材料进行了比较分析。将比较分析的最佳结果结合起来,提出了一种能够将 CPU 温度保持在 80°C 以下的基本设计,这是确保最大计算性能的要求。确定采用弧形布置配置的带覆盖矩形板翅片的 30 片散热器来提供最大的冷却性能。在材料方面,碳化硅的最低 CPU 温度为 78°C,其次是铜,为 84°C。碳化硅散热器成功满足了最大 CPU 性能的要求。铜散热器不太可能导致 CPU 故障,但它不符合最大 CPU 性能的条件。此外,然后使用拓扑优化优化此基础设计以降低材料成本,结果材料成本降低了 13%,而冷却性能仅降低了 0.32%。在未来的研究中,可以通过将风扇设计和各种 CPU 负载条件纳入设计参数来改进冷却器的整体设计。
高性能芯片的热管理复杂性增加,因为热负荷随空间和时间变化,而液体冷却系统通常是为最严格的静态条件设计的。一些研究开发了传热增强技术来提高液冷散热器的冷却能力,但由于在通道内增加了元件,泵送功率永久增加。本文提出了一种液体冷却自适应散热器,它可以有效地调整其热提取能力的分布以适应时间相关和非均匀的热负荷场景。本文介绍了具有双晶金属/SMA 翅片的中尺度冷却装置的数值设计、SMA 翅片的制造和训练程序的定义以达到所需的行为以及实验评估。通过数值和实验证明了自适应翅片局部增强传热的能力。结果表明,与普通通道相比,自适应翅片可以将温度均匀性提高 63%。使用双晶金属/SMA 翅片样品可降低热阻,尽管热通量增加,但表面最大温度梯度几乎保持不变。在部分负载间隔对总体运行周期有重大影响的应用中,可最大程度地节省能源。
1 淮阴工学院管理与工程学院江苏省智能工厂工程研究中心,淮安 223003,江苏 2 加尔米安大学教育学院物理系,库尔德斯坦卡拉 46021,伊拉克;hayder.i.mohammad@garmian.edu.krd 3 库姆理工大学机械工程系,库姆 1519-37195,伊朗;ebrahimnataj.m@qut.ac.ir 4 巴格达大学能源工程系,巴格达 10071,伊拉克;jasim@siu.edu 5 穆斯塔克巴尔大学学院化学工程与石油工业系,希拉 51001,伊拉克;hasanshker1@gmail.com 6 中水珠江规划勘测设计有限公司,广州 510610,中国; xiongwz2020@126.com 7 伦敦布鲁内尔大学能源未来研究所食物链可持续能源利用中心,Kingston Lane, Uxbridge UB8 3PH,英国 8 加拿大自然资源部 CanmetENERGY 研究中心,1 Haanel Drive, Ottawa, ON K1A 1M1,加拿大 * 通讯地址:sunxinguo2021@163.com (XS);pouyan.talebizadehsardari@brunel.ac.uk (PT);wahiba.yaici@nrcan-rncan.gc.ca (WY);电话:+1-613-996-3734 (WY)
这是根据Creative Commons Attribution许可条款(https://creativecommons.org/licenses/4.0)的开放访问出版物。请注意,重复使用,重新分配和复制尤其要求作者和来源都有信用。该许可受Beilstein档案术语和条件的约束:https://www.beilstein-archives.org/xiv/terms。
A 表面 (m2) A 翅片横截面积 (m2) A 1 圆柱体内表面 (m2) A 1 与冷却空气接触的框架壳体表面 (m2) AF in 翅片表面 (m2) A f 框架壳体有效面积 (m2) 热容 (W x sl°C) C p 恒压比热容 (JIK11°C) 外径 (m) 标量因子 热导纳 (WI°C) [G] 导纳矩阵 对流传热系数 (w/ocm2) h f 框架薄膜系数 (WI°Cm2) 长度 (in) hFi „ 翅片薄膜系数 (W/°Cm2) H Fi„ 散热片轴向长度 (m) 电流 (A) k a 层压轴向热导率 (WI°Cm) k r 层压径向热导率 (WI°Cm) k e 表观热导率 (WI°Cm) k i 热导率槽绝缘的导热系数 (WI°Cm) k 翅片 翅片的热导率 (WI°Cm) k 空气 空气的热导率 (WI°Cm) l g 气隙长度 (m) N pr 普朗特数 A r u 努塞尔特数
[20] Liu W W,Chen S Q,Li Z C等。使用单层跨表面[J]在Terahertz区域中在Terahertz区域中传输模式下的极化转换实现。光学信,2015,40(13):3185-3188。
摘要:本文重点研究了带有矩形实体翅片的组合式混合微通道散热器的数值优化。轴向长度和体积固定,外部结构可以变化。模拟是在微通道散热器的基本单元上进行的。优化的目的是找到内部和外部配置中的最佳几何排列,以使微通道散热器中的峰值温度最小化。假设微电子电路板设备在单元底壁上散发 250 W/cm 2 的高密度均匀热通量。计算流体动力学代码用于离散化流体域并求解一组控制方程。讨论了水力直径、外部结构形状和流体速度对峰值温度和全局热阻的影响。雷诺数范围为 400 至 500 的冷却剂或水以强制对流层流的形式通过计算域的入口引入,以去除矩形块微通道底部的热量。结果表明,当流体速度在微散热器轴向长度上从 9.8 m/s 增加到 12.3 m/s 时,从组合散热器底部移除的热量更多。结果表明,在带翅片的组合微通道中,泵功率增加了 37.1%,而在无翅片微散热器中增加了 27.2%。研究结果与公开文献中关于具有圆形流道的传统微散热器的记录相符,趋势一致。关键词:微通道结构、配置、组合微通道和微翅片 [2022 年 11 月 14 日收到;2023 年 4 月 4 日修订;2023 年 4 月 14 日接受] 印刷 ISSN:0189-9546 | 在线 ISSN:2437-2110
摘要:发光二极管 (LED) 因其高效的发光效果而越来越多地应用于各种微电子设备。LED 的小型化及其在重量限制内的紧凑型设备集成导致产生过多的热量,而对热量的低效管理可能导致整个系统故障。被动和/或主动散热器用于将热量从系统散发到环境中以提高性能。本研究利用 ANSYS 设计建模器和瞬态热条件来设计和模拟 LED 系统。建模器通过利用有限元法 (FEM) 技术来执行其功能。本研究考虑的 LED 系统由芯片、热界面材料和圆柱形散热器组成。研究中使用的圆柱形散热器 (CHS) 翅片的厚度在 2 毫米到 6 毫米之间,同时确保散热器的质量不超过 100 克。 LED 芯片的输入功率在 4.55 W 和 25.75 W 之间,符合一些原始设备制造商 (OEM) 的要求。进行了网格依赖性研究,以确保结果与实际获得的结果一致。模拟结果表明,额定功率不会影响 CHS 的热阻。此外,热阻随 CHS 翅片厚度的增加而增加。发现散热器的效率随圆柱翅片厚度的增加而增加,计算和模拟热效率之间的精度范围为 84.33% 至 98.80%。显然,如本研究所示,6 毫米厚度的 CHS 翅片比其他 CHS 翅片更高效。
传统散热器只是金属片的形状,依靠放置位置和周围空气从放大器中吸收热量。ICTunnel™ 更为复杂,其作用类似于调节体温的人类下丘脑。ICTunnel™ 采用铝粘合翅片散热器,这种散热器用于高功率医疗、激光和测试设备。它利用低热质量的原理,因此加热速度快,但冷却速度也快。在其相对较小的尺寸内有翅片,提供近 31 平方英尺的表面积。其操作的关键在于翅片的间距——尽可能靠近彼此以最大化隧道内的表面积,但不要太近以免彼此加热。ICTunnel™ 使用无噪音风扇以及压力和温度传感器来维持放大器的目标温度。