在我们的现代社会中,财务泡沫通常需要引起巨大的后果。在我们的研究中,我们专注于通过从不同理论中汲取的财务泡沫来定义财务泡沫。我们的工作集中在日志周期性幂律奇异性模型上,该模型将泡沫描述为价格比价格更快的价格级数的增长速度,而价格序列始终是在财务崩溃中。在定义模型理论,其校准并描述了如何通过此模型生成指标后,我们用它来复制文学的一些众所周知的结果。我们在2014年和2015年重现了中国股市SSEC中泡沫的分析。能够预测一个泡沫,然后我们专注于使用LPPLS模型实施交易策略。此后,我们提出了一项策略,该战略在LPPLS置信指标检测到正泡沫时进行投资,而LPPLS信任指标检测到即将崩溃的负泡沫时。然后,在不同类别的资产和财务气泡上测试该策略。结果,我们的分析证明了该方法的效率。此外,我们通过添加不同的功能来增强策略,当我们获得强大的积极LPPLS信任指标信号时离开市场。我们最终添加了一个平均的真实范围策略,以进行大小交易,然后根据我们可以接受的最大损失来调整位置。这些研究是对不同AS组进行的,但是,经常使用加密货币,尤其是比特币来描述整个工作中的策略。
使用镍的几秒极端紫外线(XUV)瞬态吸收光谱在镍M 2、3边缘进行镍中光激发载体动力学的直接测量。可以观察到,可以通过高斯拓宽(σ)和地面吸收光谱的高斯拓宽(σ)和红移(ωs)来描述光激发镍的核心水平吸收线形状。理论预测,实验结果证明,在初始快速载体热化后,电子温度升高(t)与高斯拓宽因子σ呈线性成正比,从而提供了电子温度松弛的定量实时跟踪。测量结果揭示了50 nm厚的多晶镍纤维的电子冷却时间,为640±80 fs。使用热热载体,光谱红移与电子温度变化ωs∝T 1具有幂律关系。5。通过载流子散射的快速电子热化伴随并遵循标称的4-FS光激发脉冲,直到载体达到二硫代平衡为止。与<6 FS仪器响应函数结合在一起,从在不同泵浦流动下获取的实验数据中估算了从34 fs到13 fs的载体热化时间,并且观察到电子热化时间随着泵的增加而降低。该研究提供了一个初始示例,即用XUV光实时测量金属中的电子温度和热化,并为在具有核心水平吸收光谱的金属中进一步研究光诱导的相变和载体传输的基础。
[1] EH Baalbergen、E. Moerlan、WF Lammen、PD Ciampa (2017) 支持未来飞机高效协同设计的方法。NLR-TP-2017-338。[2] AJ de Wit、WF Lammen、HS Timmermans、WJ Vankan、D. Charbonnier、T. van der Laan、PD Ciampa (2019) 飞机供应链的协同设计方法:多层次优化。NLR-TP-2019-202。[3] WF Lammen、P. Kupijai、D. Kickenweitz、T. Laudan (2014) 将发动机制造商的知识整合到初步飞机尺寸确定过程中。NLR-TP-2014-428。 [4] E. Amsterdam、JW Wiegman、M. Nawijn (2021) 铝合金疲劳裂纹扩展速率的幂律行为和转变。国际疲劳杂志,待提交。[5] FP Grooteman (2020) 使用光纤布拉格光栅传感器进行多载荷路径损伤检测。NLR-TP-2020-415。[6] FP Grooteman (2019) 概率故障安全结构风险分析。NLR-TP-2020-416。在 2019 年 ASIP(飞机结构完整性计划)会议上发表。[7] FP Grooteman、E. Lee、S. Jin、MJ Bos (2019) 极限载荷系数降低。在 2019 年飞机结构完整性计划 (ASIP) 会议上发表。 [8] E. Amsterdam,FP Grooteman (2016) 应力状态对疲劳裂纹扩展幂律方程指数的影响。NLR-TP-2016-064。 [9] E. Amsterdam (2021) 金属合金拉伸-拉伸疲劳中裂纹扩展速率的现象学模型。待提交。 [10] WJ Vankan、WM van den Brink、R. Maas (2017) 飞机复合材料机身结构模型的验证与相关性——初步结果。NLR-TP-2016-172。 [11] JW van der Burg、BB Prananta、BI Soemarwoto (2005) 几何复杂飞机配置的气动弹性 CFD 研究。NLR-TP-2005-224。 [12] J. van Muijden、BB Prananta、RPG Veul (2008) 疲劳分析参数化程序中的高效气动弹性模拟。NLR-TP-2008-587。[13] H. Timmermans、BB Prananta (2016) 飞机设计过程中的气动弹性挑战。第六届飞机设计合作研讨会,波兰华沙。[14] L. Paletti、E. Amsterdam (2019) 增材制造对航空航天部件结构完整性方法的影响。NLR-TP-2019-368。[15] L. Paletti、WM van den Brink、R. Bruins、E. van de Ven、M. Bosman (2020) 航空航天中的增材制造设计:拓扑优化和虚拟制造。NLR-TP-2020-285。 [16] JC de Kruijk (2018) 使用机器人技术实现复合材料的自动化制造,降低成本、缩短交货时间和提高废品率 - STO- MP-AVT-267-12。NLR-TP-2018-143。[17] WM van den Brink、R. Bruins、CP Groenendijk、R. Maas、P. Lantermans (2016) 复合材料热塑性水平稳定器扭力箱的纤维转向蒙皮设计。NLR-TP-2016-265。[18] P. Nijhuis (2020) 复合材料格栅加筋板的环保生产方法。在 2020 年阿姆斯特丹 SAMPE 欧洲展会上发表。[19] MH Nagelsmit、C. Kassapoglou、Z.Gürdal (2010) 一种提高损伤容限的新型纤维铺放结构。NLR-TP-2010-626。[20] A. Clarke、RJC Creemers、A. Riccio、C. Williamson (2005) 全复合材料损伤容限翼盒的结构分析与优化。NLR-TP-2005-478。
使用条款本文从哈佛大学的DASH存储库下载,并根据适用于其他已发布材料(LAA)的条款和条件提供,如https://harvardwiki.atlassian.net/wiki/wiki/wiki/wiki/wiki/wiki/wiki/wiki/wiki/wiki/ngy/ngy/ngy5ngy5ndnde4zjgzndnde4zjgzntc5ndndndgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgiamsfyytytewy
第一单元:粒子力学。粒子系统力学、约束、达朗贝尔原理和拉格朗日方程、速度相关势和耗散函数拉格朗日公式的简单应用第 1 章。第 1、2、3、4、5 和 6 节。汉密尔顿原理,变分法的一些技巧。从汉密尔顿原理推导出拉格朗日方程。守恒定律和对称性、能量函数和能量守恒第 2 章。第 1、2、3、5 和 6 节第二单元:简化为等效的一体问题。运动方程和一阶积分、等效一维问题和轨道分类、轨道微分方程和可积幂律势、闭合轨道条件(伯特兰定理)、开普勒问题力的平方反比定律、开普勒问题中的时间运动、有中心力场中的散射。第 3 章。第 1、2、3、5、6、7 和 8 节勒让德变换和哈密顿运动方程。循环坐标、从变分原理推导哈密顿运动方程、最小作用量原理。章:7,节:1、2、3、4 和 5。第三单元:正则变换方程、正则变换示例、谐振子、泊松括号和其他正则不变量、运动方程、无穷小正则变换、泊松括号公式中的守恒定理、角动量泊松括号关系。章:8,节:1、2、4、5、6 和 7。汉密尔顿 - 汉密尔顿主函数的雅可比方程、作为汉密尔顿 - 雅可比方法的一个例子的谐振子问题、汉密尔顿 - 汉密尔顿特征函数的雅可比方程。作用 - 单自由度系统中的角度变量。章:9,节:1、2、3 和 5。教科书:经典力学 - H. Goldstein 参考书:经典力学 - JB Upadhayaya 经典力学 - Gupta, Kumar and Sharma
背景。佐剂重组带状疱疹疫苗 (RZV) 对 ≥ 50 岁的成年人具有高度免疫原性和有效性。我们通过对 ≥ 60 岁接种疫苗的成年人进行随访和建模,评估了 (1) 初始 2 剂 RZV 方案的长期免疫原性,以及 (2) 初次接种疫苗 10 年后再接种 2 剂的免疫原性。方法。在初次接种疫苗后 10 年内评估了对 2 剂初始 RZV 的体液和细胞介导免疫 (CMI) 反应的持久性,并使用分段、幂律和 Fraser 模型对 20 年内进行建模。还评估了 2 剂额外 RZV 的免疫原性和安全性。结果。70 名成年人入选。初次接种疫苗 10 年后,体液和 CMI 反应分别比初次接种疫苗前水平高出约 6 倍和 3.5 倍。 3 种模型预测的初次接种疫苗后 20 年内的免疫持久性相似。62 名参与者(平均年龄 [标准差],82.6 [4.4] 岁)接受了 ≥ 1 剂 RZV 额外接种。1 剂额外接种可引发强烈的回忆性体液和 CMI 反应,第二次额外接种后不会进一步增加。结论。老年人对初始 2 剂 RZV 疗程的免疫反应可持续多年。在初始 2 剂疗程 10 年后,额外接种可引发强烈的回忆性免疫反应。临床试验注册。NCT02735915。关键词。带状疱疹;佐剂重组带状疱疹疫苗;免疫反应持久性;安全性。
在这项工作中,我们提出了一种在具有增强的自旋轨道耦合区域的区域的情况下,由石墨烯纳米式建造的电子l'evy玻璃。尽管石墨烯纳米纤维中的电子具有低自旋轨道耦合强度,但可以通过与适当的基础的接近效应来增加它。我们考虑具有不同边缘类型的石墨烯纳米纤维,其中包含具有可调的Rashba自旋轨道耦合的圆形区域,其直径遵循幂律分布。我们发现,旋转轨道簇诱导从超延伸到扩散电荷传输的过渡,类似于我们最近报道的具有静电簇的纳米管[Phys。修订版B.107,155432(2023)]。我们还研究了旋转轨道L´Evy眼镜中的自旋极化,并表明只有在超级延伸方案中才能找到有限的自旋极化。相比之下,自旋极化在扩散状态下消失,使电子l'evy玻璃成为有用的设备,其电子传输和自旋极化可以通过其费米能量控制。最后,我们应用多重分析来充电传递和自旋极化,并发现超级延期状态中的转移时间序列是多重分子的,而它们在扩散状态下倾向于是单反性的。相比之下,自旋极化时间序列在这两个方案中都是多重分数,表征了拟议的电子l'evy玻璃中电荷转运和自旋极化之间的介观波动之间的明显差异。
超明显点模式可以通过超均匀缩放指数α> 0进行分类,该指数α> 0,该指数符合结构因子s(k)的幂律缩放行为,这是波数k。| K |在起源附近,例如s(k)〜| K | α在s(k)随着k连续变化为k→0。在本文中,我们表明可传播性是确定s(k)不连续的准膜系统的有效方法,并由一组密集的bragg峰组成。它已在[Phys。修订版e 104,054102(2021)],对于有限α的培养基,可以将过剩可传播性s(∞)-s(t)的长时间行为拟合到形式t - (d-α) / 2的幂定律中,在其中d是空间维度,以准确提取α,以使α准确提取α。我们首先将准二极管和极限 - 周期点模式转换为两相介质,通过将它们映射到相同的非重叠磁盘的包装上,其中与磁盘的空间内部代表一个相位,并且在其外部空间代表了第二阶段。然后,我们计算包装的光谱密度〜χv(k),并最终计算其多余的散布性的长期行为。特别是我们表明,多余的传播性可用于准确提取一维(1D)极限 - 周期性倍加倍链(α= 1)和1D Quasicrystalline fibonacci链(α= 3)至0。02%的分析已知的确切结果。此外,我们获得α= 5的值。97±0。06对于二维penrose瓷砖,并提出了合理的理论参数,强烈表明α完全等于六个。我们还表明,由于此处检查的结构的自相似性,可以截断用于计算散布性并获得α准确值的散射信息的小k区域,并且与未截断的情况下的偏差很小,该案例随着系统尺寸的增加而降低。这强烈表明,可以从适度尺寸的有限样品中获得α的良好估计。此处描述的方法提供了一个简单而通用的过程,可以准确表征Quasrystalline中存在的大规模翻译顺序,并在任何自相似的空间维度中都具有极限 - 周期介质。此外,从编码〜χV(k)中编码的这些两相介质中提取的散射信息可用于估计其物理性质,例如它们的有效动态介电常数,有效的动态弹性常数和流动性。
为了平息犹太人的愤怒,希律王与第一任妻子多丽丝离婚,娶了米里安(玛丽安娜),她是海卡努斯二世的孙女,也是哈斯蒙尼王朝的公主。他盘算着这样做会为他的统治增添合法性。米里安和她的两个儿子亚历山大和阿里斯托布鲁斯确实深受民众爱戴。按照同样的逻辑(在岳母亚历山德拉的幕后操纵下),希律王任命米里安的兄弟阿里斯托布鲁斯为大祭司。然而,希律王很快就意识到这位年轻少年的受欢迎程度,这是基于他的英俊外表、魅力和哈斯蒙尼王朝的血统:“他看起来非常英俊,比那个年龄的一般男人都高。”(约瑟夫,《古物》 15:3)。他觉得哈斯蒙尼王朝的威胁仍然存在。逾越节那天,阿里斯托布鲁斯在圣殿受到了众多信徒的热烈欢迎,但希律王担心这个年轻人有朝一日会篡夺他的王位,便邀请他到自己在耶利哥的一座宫殿,并将他淹死。
理查德·T·卡里克(Richard T. ,Arthur Am Wilde 4,9,Brianna Davies 10,Colette Seifer 11,Jason D. Roberts 12,13,Jeff S. Healey 12,Ciorsti MacIntyre 14,15,Wael Alqarawi 16,17,Rafik Tadros 2,Rafik Tadros 2,Michael J. Cutler 18,Michael J. Cutter 18,Mattia Tartia Targti 19,Mattia Targia targia tarti tarti tarti tarti 19,Leonardodo Calco Calco Calco 20 Vitali 21,Matteo Bertini 21,Paolo Compagnucci 22,Michela Casella 22,Antonio Dello Russo 22,Chiara Cappelletto 4,23,24,Antonio de Luca 4,23,Antonio de Luca 4,23,Davide Stoldo stolfo 4,23,24,davide stolfo 4,23,24,Firat Duru 25 30,Nina E. Hasselberg 31,Andrea di Marco 32,33,PalomaJordà2,34,Elena Arbelo,Elena Arbelo 4,34,35,36,Zoraida Moreno Weidmann 37,Karolina Borowiec 38,39 J. Peter van Tintelen 4.42、Pyotr G. Platonov 43、Iacopo Olivotto 19、Ardan M. Saguner 25、Kristina H. Haugaa 31、Moniek Cox 44、Claudio Tondo 45.46、Marco Merlo 4.23、Andrew D. Krahn 10、Anneline S.J.M. te Riele 3.4、Katherine C. Wu 1、Hugh Calkins 1、Cynthia A. James 1† 和 Julia Cadrin-Tourigny 2 *†