MGC900 的配置旨在减少白天可再生能源充足时对公用电网电力的依赖,并在电网中断时利用电池中存储的多余太阳能。当负载超过太阳能和/或电池的可用电力或电网中断时间延长时,将使用发电机组。通过这种优化,可以降低平准化能源成本 (LCOE)(了解各种可用能源的真实能源成本的重要指标)和系统的总拥有成本 (TCO)。组合式微电网系统将减少每年 30% 的柴油消耗,此外还可以直接节省 30% 以上的设施电费。
比较不同形式的 LDES 和锂离子 BESS 的相对经济性的最佳方法是考虑每种技术的平准化储能成本 (LCOS)。LCOS 量化了特定存储技术和应用的每单位放电电量的折现生命周期成本 (例如 EUR/MWh)。因此,该指标考虑了影响放电存储电量的生命周期成本的技术和经济参数。该措施允许在技术之间创建公平的竞争环境,并考虑其前期资本成本、效率措施以及技术生命周期内的持续运营成本(请参阅下一页的 LCOS 分析)。
可再生能源 (RE) 近年来因大型光伏 (PV) 和风能项目的成功生态、经济和社会成果而受到普遍关注。混合可再生能源系统 (HRES) 是可再生能源框架的一个杰出例子。尽管如此,由于涉及多种因素,设计 HRES 相对具有挑战性。因此,优化和敏感性分析对于提供最低的平准化能源成本 (LCOE) 至关重要。HOMER® 软件最近被广泛使用,提供了多种优势,包括积极提供生态友好且有利可图的 HRES。虽然文献涵盖了全球 HRES 的广泛探索,但对约旦 HRES 的研究相对较少。这项工作利用 HOMER® 在卡拉克设计了一个有利可图的 HRES。进行的 HOMER® 模拟显示,最具成本效益的 HRES 包括光伏模块、柴油发电机、锂离子电池和电源转换器,提供的平准化能源成本为 488 美元/兆瓦时,碳排放量为 610.73 千吨/年。同时,包含光伏组件、风力涡轮机、柴油发电机、锂离子电池和电源转换器的 HRES 具有更高的 LCOE(0.489 美元/千瓦时)。包含风力涡轮机、柴油发电机、锂离子电池和电源转换器的 HRES 导致更高的 LCOE(0.586 美元/千瓦时)。仅包含柴油发电机的系统 LCOE 为 0.727 美元/千瓦时。建议升级 RE 采用以提供清洁且有利可图的电力。此外,建议利用储能来最大限度地提高 HRES 的成本效益。
图 1-1 – 潜在的 DER 优势 ...................................................................................................................................... 11 图 1-2 – NSI 预测 2022-2041(GWh) ...................................................................................................................... 20 图 1-3 – 零售额预测 2022-2041(GWh) ................................................................................................................ 20 图 1-4 - RAP DSM 对年度能源需求的影响(低成本 RAP DSM 捆绑包) ............................................................. 22 图 1-5 – 负荷净能量预测 – 基准、高、低情景(GWh) ............................................................................. 23 图 1-6 – RAP DSM 对负荷的影响(低成本捆绑包) ............................................................................................................. 24 图 1-7 – 夏季峰值 MW ............................................................................................................................................. 24 图 1-8 – 冬季峰值 MW ............................................................................................................................................. 25 图 1-9 – 供应方资源筛选方法........................................................................................................... 30 图 1-10 – LCOE 和平准化容量成本预测(2023 年) .............................................................................................. 32 图 1-11 – LCOE 平准化容量成本预测(2035 年) .............................................................................................. 32 图 1-12 – 预测的基准、最高和最低天然气价格(亨利枢纽) ............................................................................. 36 图 1-13 – 预测的基准、最高和最低天然气价格(南方之星交付) ............................................................................. 36 图 1-14 – CO 2 价格预测 ............................................................................................................................. 37 图 1-15 – SPP 南方枢纽全时段电价 ............................................................................................................. 38 图 1-16 – 所有计划的 20 年 PVRR(2022-2041 年)(百万美元) ............................................................................. 46 图 1-17 – 不确定因素列表........................................................................................................................... 47 图 1-18 — 不确定因素测试方法 .......................................................................................................................... 48 图 1-19 - 关键不确定因素树 ............................................................................................................................ 49 图 1-20 - 所有计划的 PVRR 及风险值(2022-2041 年)—(百万美元)........................................................................ 50 图 1-21 – 填充的 2022 IRP 记分卡................................................................................................................... 53
摘要:成本效益高的低碳氨生产对于现有用途的脱碳必不可少,但也可以实现其他难以电气化的终端用途的脱碳,例如航运,其中能源密度是一个关键标准。本文,我们评估了 2030 年工业规模产量(250 吨/天)氨生产(95% 可用性)的平准化成本,这些产量来自整合可再生发电、电解、氨合成和储能的商业技术。我们的分析考虑了可变可再生能源 (VRE) 来源和电网的电力供应的成本和排放属性的空间和时间变化及其对工厂设计、运营、成本和排放的影响。根据 2030 年的技术成本和电网预测,我们发现美国中部地区并网氨的成本为 0.54 – 0.64 美元/千克,而天然气氨的成本为 0.3 – 0.4 美元/千克,并且根据电网的发电结构,二氧化碳排放量可能更高或更低。完全基于 VRE 的氨生产,即使同时利用风能和光伏,也比并网生产成本更高,因为需要储存来管理 VRE 间歇性和连续氨生产。与天然气路线相比,在美国中部现有氨设施所在地使用 VRE 和电网电力的组合可以实现每吨氨减少 2 – 80% 的二氧化碳排放量,对应的平准化成本范围为 0.57 – 0.85 美元/千克 NH3。如果氨合成回路能够更加灵活,从而减少对全天候电力供应的需求,并用氨储存替代电池储存,则可以进一步降低成本。关键词:氨、氢、脱碳、可再生能源、技术经济分析、电气化过程、优化■简介
1 氢能价值链 3 2 全球二氧化碳排放量(按能源部门划分) 3 3 电解槽装机容量(2020-2050 年) 4 4 氢气供应链 5 5 氢循环 6 6 电解槽概述 7 7 俄罗斯入侵乌克兰前后欧洲氢气平准成本 10 8 成本因素和平准生产成本 11 9 绿色氢气生产项目的关键要素 12 10 用于输送天然气的聚乙烯管道 13 11 二苄基甲苯液态有机氢载体工艺 14 12 氢金属氢化物气瓶 15 13 液化氢储罐 16 14 盐穴示例 17 15 氨燃料拖拉机 17 16 电解槽作为电网管理工具 18 17 绿色氧气储存和回收利用使用的氢气项目价值不断增加 19 18 绿色氢气优先顺序 21 19 氢气炼钢 23 20 哈萨克斯坦太阳能+风能转化为氢气的潜力 41 21 印度尼西亚 Tangguh 氢气生产情景 42 22 部分亚行海上可再生能源转化为氢气的潜力 43 发展中成员国 23 利用“Power-to-X”商业模式实现海上可再生能源货币化 44 24 遍布各大洲的氢气走廊 46 25 从非竞争性中心向交易中心的转变 47 26 亚行-ISA 框架评估采用氢气的国家的生态系统准备情况 50 27 绿色氢气虚拟全球卓越中心的服务 51
我们提出了一种混合可再生能源系统——地热能存储系统 (GeoTES) 和太阳能系统——以提供低成本的可调度电力,时间范围从每日、每周到每季不等。带太阳能系统的 GeoTES 使用聚光太阳能集热器场来产生热水,然后注入沉积盆地以产生合成地热资源。然后,可以在电网需要时调度存储的地热。GeoTES 对于光伏和风能等非灵活可再生技术渗透率高的电网尤其有价值。在这项工作中,我们结合了电力循环模拟工具 IPSEpro 和国家可再生能源实验室 (NREL) 的经济分析工具 SAM,开发了一个复杂的混合模型来评估 GeoTES 的技术和经济潜力。分析表明,在适当的初始充电期内,存储中的热损失几乎可以忽略不计,是一种适合长期储能的技术。评估了各种电力循环选项,并选择了最合适的电力循环进行进一步研究。 GeoTES 系统的年度计算表明,季节性存储 4000 小时可实现 12.4 ¢/kWh e 的平准化存储成本 (LCOS);该值远低于现有的长期存储。与电池和熔盐储热系统不同,GeoTES 的 LCOS 对 8 小时以上的存储时间不敏感。这一结果表明,GeoTES 可以成为未来电力市场上具有竞争力的季节性存储技术。GeoTES 系统的平准化电力成本也经过仔细分析,根据太阳能集热器的价格,其变化范围在 10.0 到 16.4 ¢/kWh e 之间。[DOI:10.1115/1.4047970]
尽管卫星体积巨大,但其结构与传统航天器截然不同。它高度模块化,由几种固态模块组成,每种模块使用数量非常多。因此,模块可以大规模生产,从而大幅降低生产成本。这种模块化方法还提供了良好的弹性和冗余,以防发生损坏或技术故障,因为没有单点故障。这些模块设计为由轨道上的自主机器人组装,最大限度地减少了对载人航天的需求。所有这些特点都使生产和运营成本保持在低位,从而使系统提供具有竞争力的平准化电力成本。
咨询服务的广泛工作范围应包括以下工作,但下文未指定但为成功完成工作所必需的任何活动均被视为在顾问范围内: 为 ISBL 设施的“基于水电解器的绿色氢气工厂及相关系统”的许可、工程、采购和建设 (LEPC) 编制“建议书 / 招标邀请 (ITB) 和技术评估标准”。 浮动招标、举行投标前/后会议、技术和商业疑问解决 (TQ/CQ)、接收投标人的投标并对提交的投标进行技术和商业评估。 根据氢气平准成本 (LCOH) 提供中标建议。 制定地块平面图和项目进度表。