内生菌是生活在植物组织中的微生物。由于他们与宿主的亲密关联,他们可以对植物生理产生强大的影响(Hardoim等,2008; Johnston-Monje和Raizada,2011; Hardoim等,Hardoim等,2012; Hardoim等,2015; Truyens等,2015)。内生菌可以通过提供养分,增加营养摄取,调节和分泌植物素的养分来促进植物生长,并防御植物的病原体(Hu等,2003; Johnston-Monje和Raizada,2011; Mousa et al。,2016; Shehata等,2017,2017年)。植物似乎选择了特定的内生菌,尤其是在幼苗出现期间,这些内生植物可能由种子跨几代人培养,以保护幼苗免受环境压力的影响(Truyens等,2015; Pitzschke,2016; 2016; Shahzad et al。例如,少年玉米植物中内生菌种的显着部分是种子来源的,并从其含种子的父母继承(Johnston-Monje等,2014; Johnston-Monje等,2016)。与植物相关的微生物群可以源自环境和父母,尽管每个人的相对贡献并不总是很清楚(Aleklett和Hart,2013年)。一些微生物内生菌似乎在被子植物,与土壤环境无关,甚至在无菌底物上生长时都广泛保守。这表明至少某些植物相关的微生物是种子衍生的(Johnston-Monje等,2014,Johnston-Monje等,2021)。此外,发现杆菌的特异性细菌被发现是所有研究的所有大麻基因型的内生细菌。此外,有些植物似乎具有“核心”微生物群,这些植物对物种的大多数人来说都是共有的(Sánchez-lóPez等,2018)(Johnston-Monje等,2014; Truyens等,2015; Walitang et al。,2018)。最近第一次证明了大麻中种子传播微生物遗传的这种现象(Dumigan和Deyholos,2022年)。这项研究表明,在加拿大西部的多个位置生长的大麻和药物大麻品种载体生物活性和抗真菌性内生细菌,再到下一代幼苗。然而,这项先前的研究仅限于可培养的微生物,并且是在轴原条件下进行的,因此未测试土壤对内生微生物组的影响。用于加拿大医疗和娱乐市场的药物大麻植物通常在Soilless培养基中生长。这为种植者提供了对可以从土壤转移的病原体的更多控制。然而,它还限制了可能是土壤的潜在有益的微生物,并可能无意中改变了大麻植物的微生物组。一个重要的问题来自这个很大程度上未研究的主题:土壤和种子衍生因素对大麻幼苗内生菌社区组成的相对影响是什么?在当前的研究中,我们假设土壤将对大麻幼苗endosphere的微生物组产生显着影响,而大麻幼苗的胚芽细菌的组成部分将来自种子 - 生物元素细菌,与土壤条件无关。我们使用基于16S的扩增子宏基因组学测试了这一假设,以比较两种土壤类型的作用,无论是否有或没有灭菌,对三种不同的大麻基因型中的endosphere微生物组组成。
为了加速优良苹果品种的早期发育,建立加速从幼苗期向成年期过渡的技术至关重要。阐明这一阶段转变背后的生理机制将有助于开发确保早期阶段转变的苹果幼苗生长系统。在此,在受控条件下对无融合生殖海棠 Malus hupehensis (Pamp.) Rehd. 进行水培栽培,以探索其在阶段转变过程中的植物激素动态。在 57 株幼苗中,有 15 株在发芽后约 10 个月内开花。开花率为 26.3%。开花幼苗的平均高度和平均茎周长分别比未开花幼苗高 27 厘米和 0.56 厘米。开花幼苗主茎顶端成熟叶片中脱落酸浓度在 70 节时高于未开花幼苗,到 90 节时降至未开花幼苗以下。开花幼苗与未开花幼苗主茎顶端成熟叶片中 GA 4 和细胞分裂素浓度无显著差异。这些结果表明,在受控环境下采用水培有利于促进湖北地黄的早期阶段转变。此外,维持主茎顶端成熟叶片中较低的脱落酸浓度水平可促进湖北地黄的阶段转变。
。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。它是制作
寻找环境友好的产品以减少农作物对合成化肥的依赖提出了一个新的挑战。本研究旨在隔离和选择有效的天然PGPB,以减少对合成NPK肥料的依赖。从红树林(Avicennia Marina)的沉积物和根中分离出41种细菌,并在体外条件下评估其PGP特征。,只选择了两种兼容的杆菌菌株,以单独使用并混合使用以促进番茄幼苗的生长。在锅中以不同的合成NPK施肥率(0、50和100%NPK)评估了在土壤中应用的三种接种剂的效率。实验是在具有三个复制的完全随机设计中设置的。结果表明,几乎所有研究的参数显着增加了不同的接种剂。但是,它们的有效性与合成受精的应用率密切相关。应用细菌接种剂,仅50%NPK显着提高了植物高度(44-51%),数字生物量(60-86%),叶面积(77-87%),绿色平均水平(29-36%)(29-36%),归一化差异植被指数(29%),芽干重量(82-92--92--92-植物)和根干的重量(160)。关于光合活性,这种处理对叶绿素A(25-31%),叶绿素B(34-39%)和类胡萝卜素(45-49%)的浓度显示出积极影响。有趣的是,这些增加确保了与给定100%NPK的对照植物相似或更高的最高值。此外,在接种50%NPK的细菌混合物的植物中记录了番茄芽中N,P,K,Cu,Fe,Zn和Ca的最高积累。在第一次证明,天然PGP细菌衍生自红树林植物物种A.码头对番茄幼苗的质量产生了积极影响,同时降低了50%的NPK。
简单摘要:进行了实验,以研究枯草芽孢杆菌对不同钾水平下黄瓜幼苗的生长和光合系统的影响。用“ Xinjin 4”作为测试材料进行了锅实验,并进行了两因素实验。这两个因素是不同浓度的钾离子和枯草芽孢杆菌治疗。研究了不同处理对黄瓜幼苗生长,光合特征,根形态和叶绿素荧光参数的影响。结果表明,当钾离子的浓度为0.2 g/锅时,枯草芽孢杆菌对黄瓜幼苗生长和叶片光合作用的影响最大。这项研究为进一步利用枯草芽孢杆菌制造微生物肥料并提高了黄瓜的营养吸收效率以促进农业的发展。
摘要:土壤盐分抑制作物发芽和幼苗生长,导致作物立地不均、生长不均匀、产量低下。本研究旨在评估接种从盐渍土中分离的植物生长促进细菌 (PGPB) 菌株 (E1 和 T7) 的十字花科种子的早期耐盐性。在对照和盐度条件下培养未接种和接种的 Lobularia maritima、Sinapis alba 和 Brassica napus 种子,首先在琼脂平板中评估每种盐的发芽抑制浓度,然后在用含有 0 或 75 mM NaCl 的水灌溉的土壤中培养。我们的结果表明,T7 是唯一能够在盐渍条件下增加 L. maritima 发芽的菌株。然而,接种 T7 的 L. maritima 和 S. alba 植物以及接种 E1 的 B. napus 植物的茎生物量、根长和分枝数均有所增加。同时,这些幼苗表现出较少的氧化损伤和更强的平衡植物活性氧生成的能力。这项研究表明,用耐盐 PGPB 菌株接种种子是一种适合在早期阶段改善盐度负面影响的策略。尽管如此,观察到的特定植物-宿主相互作用凸显了针对特定不利环境条件建立定制的 PGPB-作物关联的必要性。
考虑到资源有限,苗圃看起来非常好。该系统依赖于大量的种子、人力和运气投入。每床种植 7500 颗种子,挑选 1000 株幼苗。令人惊讶的是,在拔掉侧根后,移栽后的幼苗存活率(我们没有看到任何新种植的种植园来证实这一点)为 78%。根必须尽可能笔直。这个苗圃的昆虫和根部损害严重。昆虫是损害最严重的地方,昆虫从悬垂在苗圃床上的柚木树枝上掉下来。经受住昆虫、老鼠和湿度限制的幼苗看起来非常好。在苗圃周围清理 15 米范围内易受昆虫侵害的树种边界,有助于减少昆虫进入苗圃的媒介。苗圃中间的红木树没有受到昆虫的侵害,下面的幼苗长势良好。
摘要 从寡核苷酸定向诱变 (ODM) 到 CRISPR 系统,基因组编辑工具都使用合成寡核苷酸进行核苷酸的靶向交换。目前,大多数基因组编辑方案依赖于具有体细胞克隆变异和植物再生限制的体外细胞或组织培养系统。因此,我们在此报告了一种用于优化 ODM 的替代植物细胞测试系统,该系统基于将寡核苷酸溶液注射到单倍体玉米幼苗的顶端分生组织区域。使用 5′-荧光素标记的寡核苷酸,我们检测到合成 DNA 分子在茎尖分生组织细胞和叶原基维管束中的积累。为了沉默或敲低体细胞中的八氢番茄红素去饱和酶基因,将带有 TAG 终止密码子的 41 碱基长的单链寡核苷酸注射到玉米幼苗中。我们检测到长出的 M1 幼苗长出了带有白色条纹或浅绿色的叶子。白色条纹的共聚焦显微镜显示,除了叶绿素荧光缺乏的组织区域外,白色条纹中还存在含叶绿素的细胞。对白色条纹的 DNA 样本进行 Ion Torrent 测序表明,八氢番茄红素去饱和酶基因中的 TAG 终止密码子的读取频率为 0.13–1.50%。在将寡核苷酸分子注射到玉米幼苗的茎尖分生组织区域后,出现褪绿异常支持了寡核苷酸分子的诱变性质。所述方案为在幼苗早期阶段表征具有不同化学性质的诱变寡核苷酸的功能以及在植物水平上测试各种处理组合的效率提供了基础。
摘要:在压力或最佳条件下,植物培养了一个特定的共生微生物行会,以增强包括代谢调节在内的关键功能。尽管植物基因型在微生物选择中的作用有充分的文献证明,但该基因型特异性微生物组装在维持宿主稳态方面的潜力仍未得到充分研究。在这项研究中,我们旨在评估与植物增长促进根瘤菌(PGPR)的橄榄基因型对微生物接种对微生物接种的特异性(PGPR),以查看先前与本地或质量微生物的抗压植物是否会在叶子中表现出任何变化。在受控和压力条件下测试了两个突尼斯精英品种,Chetoui(干旱敏感)和Chemleli(耐旱)。叶片样品,以鉴定未靶向的代谢产物。根和土壤样品用于提取使用16S rRNA扩增子测序的细菌群落分析的微生物基因组DNA。分别将分数分析,聚类分析,热图,Venn图和Krona图表应用于代谢和微生物数据。结果表明,在应力和接种条件下,Chetoui品种的叶子代谢组的动态变化。在最佳状态下,PGPR财团引起了敏感变化的代谢模式的明显变化,与在耐旱的品种中观察到的植物化学相一致。这些变化涉及脂肪酸,生育酚,苯酚,甲氧基诺酚,硬霉素,三萜和糖。另一方面,表现出可比代谢谱的化学品种似乎不受应力和接种的影响,可能是由于其耐受能力。微生物在治疗中的分布明显不均匀。测试的幼苗遵循各种特定于选择有益的土壤细菌以减轻压力的策略。仅在两个品种的最佳条件下才检测到一种高度丰富的湿型接种物,这使得植物基因型的水分历史成为塑造微生物群落的选择性驱动器,从而预测大型生态系统中微生物活性的有用工具。