电磁场(3-0-0)UPCEE303先决条件:1。Mathematics-I 2。数学课程结局在课程结束时,学生将展示能力1。了解电磁的基本定律。2。在静态条件下获得简单配置的电场和磁场。3。分析时间变化的电场和磁场。4。以不同形式和不同的媒体了解麦克斯韦方程。5。了解EM波的传播。模块1:(08小时)坐标系统与转换:笛卡尔坐标,圆形圆柱坐标,球形坐标。向量计算:差分长度,面积和体积,线,表面和体积积分,DEL操作员,标量的梯度,矢量和散射定理的差异,矢量和Stoke定理的卷曲,标量的Laplacian。模块2:(10小时)静电场:库仑定律,电场强度,电场,线,线,表面和体积电荷引起电流的边界条件。静电边界值问题:泊松和拉普拉斯方程,独特定理,求解泊松和拉普拉斯方程的一般程序,电容。磁边界条件。教科书:模块3:(06小时)Magneto静态场:磁场强度,生物 - 萨瓦特定律,Ampere的电路Law-Maxwell方程,Ampere定律的应用,磁通量密度 - 最大的方程。Maxwell方程,用于静态场,磁标量和向量电势。模块4:(10小时)电磁场和波传播:法拉第定律,变压器和运动电磁力,位移电流,麦克斯韦方程,最终形式,时谐波场。电磁波传播:有损耗的电介质中的波传播,损耗中的平面波较少介电,自由空间,良好的导体功率和poynting矢量。
电磁场(3-0-0) 先决条件:1. 数学-I 2. 数学-II 课程成果 课程结束时,学生将展示以下能力:1. 理解电磁学的基本定律。2. 在静态条件下获得简单配置的电场和磁场。3. 分析时变电场和磁场。4. 理解不同形式和不同介质中的麦克斯韦方程。5. 了解电磁波的传播。模块 1:(08 小时)坐标系与变换:笛卡尔坐标、圆柱坐标、球坐标。矢量微积分:微分长度、面积和体积、线、表面和体积积分、Del 算子、标量的梯度、矢量散度与散度定理、矢量旋度与斯托克斯定理、标量的拉普拉斯算子。模块 2:(10 小时)静电场:库仑定律、电场强度、点电荷、线电荷、表面电荷和体积电荷产生的电场、电通量密度、高斯定律 - 麦克斯韦方程、高斯定律的应用、电势、E 和 V 之间的关系 - 麦克斯韦方程和电偶极子与通量线、静电场中的能量密度、电流和电流密度、点形式的欧姆定律、电流的连续性、边界条件。静电边界值问题:泊松和拉普拉斯方程、唯一性定理、求解泊松和拉普拉斯方程的一般程序、电容。模块 3:(06 小时)磁静场:磁场强度、毕奥-萨伐尔定律、安培电路定律-麦克斯韦方程、安培定律的应用、磁通密度-麦克斯韦方程。麦克斯韦静场方程、磁标量和矢量势。磁边界条件。模块 4:(10 小时)电磁场和波传播:法拉第定律、变压器和运动电磁力、位移电流、最终形式的麦克斯韦方程、时谐场。电磁波传播:有损电介质中的波传播、无损电介质中的平面波、自由空间、良导体功率和坡印廷矢量。教科书:
电磁场(3-0-0) 先决条件:1. 数学-I 2. 数学-II 课程成果 课程结束时,学生将展示以下能力:1. 理解电磁学的基本定律。2. 在静态条件下获得简单配置的电场和磁场。3. 分析时变电场和磁场。4. 理解不同形式和不同介质中的麦克斯韦方程。5. 了解电磁波的传播。模块 1:(08 小时)坐标系与变换:笛卡尔坐标、圆柱坐标、球坐标。矢量微积分:微分长度、面积和体积、线、表面和体积积分、Del 算子、标量的梯度、矢量散度与散度定理、矢量旋度与斯托克斯定理、标量的拉普拉斯算子。模块 2:(10 小时)静电场:库仑定律、电场强度、点电荷、线电荷、表面电荷和体积电荷产生的电场、电通量密度、高斯定律 - 麦克斯韦方程、高斯定律的应用、电势、E 和 V 之间的关系 - 麦克斯韦方程和电偶极子与通量线、静电场中的能量密度、电流和电流密度、点形式的欧姆定律、电流的连续性、边界条件。静电边界值问题:泊松和拉普拉斯方程、唯一性定理、求解泊松和拉普拉斯方程的一般程序、电容。模块 3:(06 小时)磁静场:磁场强度、毕奥-萨伐尔定律、安培电路定律-麦克斯韦方程、安培定律的应用、磁通密度-麦克斯韦方程。麦克斯韦静场方程、磁标量和矢量势。磁边界条件。模块 4:(10 小时)电磁场和波传播:法拉第定律、变压器和运动电磁力、位移电流、最终形式的麦克斯韦方程、时谐场。电磁波传播:有损电介质中的波传播、无损电介质中的平面波、自由空间、良导体功率和坡印廷矢量。教科书:
1。电荷保护定律。库仑定律。电场强度。叠加原理。连续电荷分布的模型。均匀带电环和灯丝的电场强度。2。电场强度向量的通量。高斯定理用于静电场强度矢量。将高斯定理应用于点充电和平面。3。电场电位。点充电的电势。静电场载体与电势之间的关系。泊松方程。均匀带电的球体的潜力。4。电偶极子。点偶极子的场强和静电电势。外部电场中的电偶极子(力,扭矩,势能)。5。电容的概念。具有不同几何配置的电容器的示例。平行板电容器电容的推导。6。磁场B矢量。带有电流的生物萨瓦特 - 拉普拉斯定律的导体的磁场。具有直流电流的有限长度直导体的磁场。7。磁场矢量的循环定理。带有直流电的环中心的磁场。在长螺线管中的磁场表达。电感。8。电动力。DC电路中的功率。9。广义欧姆定律(差异和整体形式)。Joule-Lenz Law(差异和积分形式)。电磁场。麦克斯韦的方程式以整体和差异形式,其物理含义。不同单位系统中的基本电磁量和定律:SI,CGS和Gaussian。10。来自麦克斯韦方程的电磁平面波方程的推导。电磁平面波的横向性质,电场和磁场之间的关系,电场和磁场的相位振荡。11。平面谐波的极化状态。椭圆形,圆形和线性极化。偏振和自然光,MALUS定律,极化程度。12。光的衍射。 huygens-fresner原理:定义和数学表述。 菲涅耳螺旋,菲涅耳区板。 13。 通过圆形孔和圆形屏幕(菲涅耳区,菲涅耳螺旋)衍射14。 在不透明屏幕的直线边缘处的衍射。 cornu螺旋。 15。 fraunhofer衍射。 衍射模式的属性。 16。 光的干扰。 干扰形成,基本关系和干扰场的特征的条件。 干扰条纹的类型。 17。 电磁波的折射。 Snell定律的推导。 总内部反射。 18。 菲涅尔公式。 19。 20。光的衍射。huygens-fresner原理:定义和数学表述。菲涅耳螺旋,菲涅耳区板。13。通过圆形孔和圆形屏幕(菲涅耳区,菲涅耳螺旋)衍射14。在不透明屏幕的直线边缘处的衍射。cornu螺旋。15。fraunhofer衍射。衍射模式的属性。16。光的干扰。干扰形成,基本关系和干扰场的特征的条件。干扰条纹的类型。17。电磁波的折射。Snell定律的推导。总内部反射。18。菲涅尔公式。19。20。在反射和折射过程中电磁波极化。电磁表面波。使用菲雷斯公式的应用:布鲁斯特定律。在两个介质边界处电磁波的相位关系。光的分散。频率和空间分散。频率分散的电子理论。频率频率依赖性。在分散介质中电磁波包的传播。组速度。瑞利公式。21。培养基的非线性极化。 非线性光学现象(频率的谐波产生,加法和减法,自我关注,刺激散射)。 22。 电磁波在介电波导中传播的特征。 23。 光学平面波导。 介绍波导模式。 24。 光纤。 纤维结构。 光纤中的光传播。 25。 激光的分类(类型)。 各种类型激光器的特征。 激光辐射的主要特征及其评估方法。 26。 半导体中的吸收和光辐射的产生。 发光二极管。 最简单的半导体激光器的设计和操作。 27。 光子晶体。 使用光子晶体用于信息传输,存储和处理。 光子晶体中带结构的形成。培养基的非线性极化。非线性光学现象(频率的谐波产生,加法和减法,自我关注,刺激散射)。22。电磁波在介电波导中传播的特征。23。光学平面波导。介绍波导模式。24。光纤。纤维结构。光纤中的光传播。25。激光的分类(类型)。各种类型激光器的特征。激光辐射的主要特征及其评估方法。26。半导体中的吸收和光辐射的产生。发光二极管。最简单的半导体激光器的设计和操作。27。光子晶体。使用光子晶体用于信息传输,存储和处理。光子晶体中带结构的形成。