随着芯片技术的发展,摩尔定律在微电子工业中的运用可能接近极限,三维集成电路(3D-IC)技术可以克服摩尔定律的限制,具有高集成度、高性能和低功耗的优势[1-3]。因此,3D IC中的芯片堆叠引起了电子工业的广泛关注,不同的键合技术被开发出来以保证芯片(或晶圆)的垂直堆叠,其中采用焊料的TLP键合已被提出作为实现低温键合和高温服务的有效方法。Talebanpour [4]采用Sn3.0Ag0.5Cu作为3D结构中的互连材料,经260 ℃回流温度和时效后获得了全IMC(Cu6Sn5/Cu3Sn)。储[5]研究了低温稳态瞬态液相(TLP)键合Cu/Sn/Cu和Ni/Sn/Ni焊点,分别检测到Cu 6 Sn 5 、Cu 3 Sn、Ni 3 Sn 4 、Ni 3 Sn 2 。陈[6]研究了基于TLP键合的Cu/Sn3.5Ag/Cu和Cu/Sn3.5Ag/Cu15Zn,焊点中检测到了Cu 6 Sn 5和Cu 6 (Sn, Zn) 5 ,研究发现Cu 6 Sn 5 由于其晶粒结构均一且脆性大,会降低键合可靠性;而Zn能有效地将均一晶粒结构修改为交错结构,从而提高键合可靠性。在3D IC结构中,完整IMC焊点在热循环载荷下的可靠性一直是重要的研究方向,有限元程序可以用来计算IMC焊点的应力-应变响应和疲劳寿命。田 [7] 研究了三维IMC接头的应力分析和结构优化
(CALCE)马里兰大学,马里兰州帕克分校,美国 通讯作者。电话:+1 301 227 3985;电子邮件:christopher.hendricks@navy.mil;海军水面作战中心卡德罗克分部,9500 MacArthur Blvd,西贝塞斯达,马里兰州 20817,美国 摘要:锂离子电池的诊断和预测依靠电阻抗、容量和电压测量来推断电池的内部状态。电池结构的机械变化代表了电池状态的额外衡量标准,因为这些变化与整体电池健康状况有关。当锂离子电池充电和放电时,锂离子会从阳极和阴极插入或移除,这一过程称为嵌入和脱嵌。当锂离子嵌入和脱嵌时,它们会导致电极颗粒晶格发生变化,从而导致体积变化。这些体积变化会导致锂离子电池电极产生机械应力和应变,因此整个电池的厚度会随着充电和放电而变化。本文介绍了一项使用表面贴装应变计现场测量锂离子电池结构变化的研究,以及单元间应变响应差异的表征。然后使用神经网络建模结构来预测动态放电条件下电池的放电深度。
分布式光纤应变传感系统全尺寸疲劳测试评估 执行摘要 目前业界测量应变的惯例是使用电阻箔应变计。这些传感器安装起来很费时间,每个传感器需要三根屏蔽线,当需要进行高密度应变测量时,这会给被测结构增加相当大的重量和复杂性。电气仪表也容易疲劳,安装在作战飞机上时需要频繁校准。分布式光纤应变测量系统可以显著降低安装成本和复杂性,并解决与电气仪表相关的一些耐用性和性能问题。本报告详细介绍了传统电阻箔应变计和基于瑞利散射的商用光纤分布式应变测量系统性能的实验比较。所呈现的结果比较了两个系统之间的应变响应、空间分辨率和噪声水平,首先是包含疲劳裂纹的试样,其次是全尺寸疲劳试验件,该试验件由一架退役 F/A-18 的中心筒组成,受到模拟操作谱载荷。在大多数区域,光学应变数据与使用箔应变计进行的测量结果相比效果良好,但是,该系统存在一些局限性,特别是在高应变梯度区域测量应变时。尽管存在这些限制,但在许多情况下,与传统的电阻箔应变计相比,瑞利散射有可能以大幅降低每个传感点的成本提供详细的应变测量。
执行摘要 目前业界测量应变的惯例是使用电阻箔应变计。这些传感器安装起来很费时,每个传感器需要三根屏蔽线,当需要进行高密度应变测量时,这会给被测结构增加相当大的重量和复杂性。电子仪表也容易疲劳,安装在作战飞机上时需要经常校准。分布式光纤应变测量系统可以大大降低安装成本和复杂性,并解决与电子仪表相关的一些耐用性和性能问题。本报告详细介绍了传统电阻箔应变计和基于瑞利散射的商用光纤分布式应变测量系统的性能之间的实验比较。所给出的结果比较了两个系统之间的应变响应、空间分辨率和噪声水平,首先是在包含疲劳裂纹的试样上,其次是在由退役 F/A-18 中心筒组成的全尺寸疲劳试验件上,该试验件受到模拟作战谱载荷。在大多数区域,光学应变数据与使用箔应变计进行的测量结果相比效果良好,但是,该系统存在一些局限性,特别是在高应变梯度区域测量应变时。尽管存在这些局限性,但在许多情况下,与传统电阻箔应变计相比,瑞利散射仍有潜力以大幅降低每个传感点的成本提供详细的应变测量。
摘要:在高应变速率(HSR)加载下的单向和平原编织S2玻璃/乙烯基酯复合材料的压缩特性和失败分析已使用Split Hopkinson压力棒(SHPB)技术研究。在这项工作中采用了一种系统的实验方法,以确定各种应力水平下的损伤进展以及对复合材料的应变率影响。经典的SHPB设备已通过波浪捕获机制纳入,以应用预定的冲击负荷水平并限制重复的负载。这有助于识别加载期间微结构损伤进展。研究了所有三个主要方向的应力 - 应变响应,并通过微观检查确定相关的故障模式。将准静态抗压强度,失效应变和弹性模量与SHPB测试结果进行比较,以确定失败机理的变化。观察到单向和普通编织复合材料的抗压强度和失效应变均取决于速率。分析了这种压缩响应的速率依赖性,并建立了对复合材料的速率影响之间的相关性。最后,在高应变率负载下,还针对单向复合材料进行了三维瞬态有限元分析(FEA),以便对失败机理有透彻的了解。载荷以厚度,纤维和横向施加,并模拟相应的应力轮廓。加载的所有三个主要方向的应力 - 应变行为的FEA预测与高应变率实验结果良好相关。
第 1 章 1.0 概述。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-1 1.1 文件的目的和使用。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-1 1.1.1 简介。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-1 1.1.2 手册的范围。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-1 1.2 术语。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-3 1.2.1 符号和定义。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-3 1.2.2 国际单位制(SI)。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.........1-3 1.3 常用公式 .............。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-5 1.3.1 概述 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。..1-5 1.3.2 简单单位应力 ...................。。。。。。。。。。。。。。。。。。。。。。。。.....1-5 1.3.3 组合应力(见第 1.5.3.5 节) ........。。。。。。。。。。。。。。。。。。。。。。。。。。1-5 1.3.4 变形(轴向)。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-5 1.3.5 变形(弯曲)。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-5 1.3.6 挠度(扭转)。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-6 1.3.7 双轴弹性变形。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-6 1.3.8 基本列公式。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-6 1.3.9 非弹性应力应变响应。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-7 1.4 基本原则。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-9 1.4.1 概述 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-9 1.4.2 压力。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-10 1.4.3 应变。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.........1-10 1.4.4 拉伸性能 .............。。。。。。。。。。。。。。。。。。。。。。。。...............1-11 1.4.5 压缩特性 ..........。。。。。。。。。。。。。。。。。。。。。。。。................1-17 1.4.6 剪切特性 .........。。。。。。。。。。。。。。。。。。。。。。。。......................1-18 1.4.7 轴承特性 ..。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-19 1.4.8 温度影响。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-21 1.4.9 疲劳性能。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-22 1.4.10 冶金不稳定性。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。....1-25 1.4.11 双轴特性 .................。。。。。。。。。。。。。。。。。。。。。。。。.........1-25 1.4.12 断裂韧性 ............。。。。。。。。。。。。。。。。。。。。。。。。...............1-27 1.4.13 疲劳裂纹扩展 .........。。。。。。。。。。。。。。。。。。。。。。。。.................1-36 1.4.14 用户材料热处理值的使用 .......。。。。。。。。。。。。。。。。。。。。。。1-39 1.5 故障类型。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-41 1.5.1 概述 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-41 1.5.2 材料故障。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-41 1.5.3 不稳定故障。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-42 1.6 列。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-43 1.6.1 概述 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-43 1.6.2 主要失稳故障。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-43 1.6.3 局部不稳定故障。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-43 1.6.4 柱测试结果的校正。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-44 1.7 薄壁截面和加强薄壁截面。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-53 1.8 用于非线性静态分析的基于许用值的流动应力。。。。。。。。。。。。。。。。。。。。。。。。1-55 1.8.1 简介。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-55 1.8.2 程序。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-55 1.8.3 报告要求。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-57
第 1 章 1.0 概述。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-1 1.1 文件的目的和使用。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-1 1.1.1 简介。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-1 1.1.2 手册的范围。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-1 1.2 命名法 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-3 1.2.1 符号和定义 . . .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-3 1.2.2 国际单位制(SI) .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.........1-3 1.3 常用公式 .............。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-5 1.3.1 概述 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。..1-5 1.3.2 简单单位应力 ...................。。。。。。。。。。。。。。。。。。。。。。。。.....1-5 1.3.3 组合应力(见第 1.5.3.5 节) ........。。。。。。。。。。。。。。。。。。。。。。。。。。1-5 1.3.4 偏转(轴向)。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-5 1.3.5 偏转(弯曲) .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-5 1.3.6 挠度(扭转) .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-6 1.3.7 双轴弹性变形 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-6 1.3.8 基本列公式 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-6 1.3.9 非弹性应力-应变响应。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-7 1.4 基本原理.。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-9 1.4.1 一般 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-9 1.4.2 压力。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-10 1.4.3 应变.。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.........1-10 1.4.4 拉伸性能 .............。。。。。。。。。。。。。。。。。。。。。。。。...............1-11 1.4.5 压缩特性 ..........。。。。。。。。。。。。。。。。。。。。。。。。................1-17 1.4.6 剪切特性 .........。。。。。。。。。。。。。。。。。。。。。。。。......................1-18 1.4.7 轴承特性 ..。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-19 1.4.8 温度效应 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-21 1.4.9 疲劳性能.。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-22 1.4.10 冶金不稳定性。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。....1-25 1.4.11 双轴特性 .................。。。。。。。。。。。。。。。。。。。。。。。。.........1-25 1.4.12 断裂韧性 ............。。。。。。。。。。。。。。。。。。。。。。。。...............1-27 1.4.13 疲劳裂纹扩展 .........。。。。。。。。。。。。。。。。。。。。。。。。.................1-36 1.4.14 用户材料热处理值的使用 .......。。。。。。。。。。。。。。。。。。。。。。1-39 1.5 故障类型。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-41 1.5.1 概述 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-41 1.5.2 材料故障。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-41 1.5.3 不稳定故障。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-42 1.6 列。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-43 1.6.1 概述 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-43 1.6.2 主要失稳故障。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-43 1.6.3 局部不稳定故障。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-43 1.6.4 柱测试结果的校正.。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-44 1.7 薄壁截面和加筋薄壁截面。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-53 1.8 基于允许值的非线性静态分析流动应力。。。。。。。。。。。。。。。。。。。。。。。。1-55 1.8.1 简介 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-55 1.8.2 程序。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-55 1.8.3 报告要求.。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-57