1) 在研究范围内,抗拉强度和屈服强度随应变速率增加而增加。2) 屈服强度的变化趋势与抗拉强度非常相似。3) 延展性随应变速率增加而降低。4) 应变敏感性m对于Sn-9Zn-0.2Ag-0.6Sb为0.0831,对于Sn-9Zn-0.2Ag-0.8Sb为0.1455,对于Sn-9Zn-0.6Ag-0.2Sb为0.1274,对于Sn-9Zn-0.8Ag-0.2Sb为0.1346。5) 所有m值都小于0.3,因此本文研究的无铅焊料均不会出现超塑性行为。6) 需要进一步研究这些焊料合金在不同温度和应变速率下的拉伸性能,以更详细地了解热力学硬化响应。
摘要。对 5754、6061 和 7075 铝合金进行了 RCS 工艺提高机械强度的潜力评估,这三种铝合金呈现出与各自合金元素相关的不同硬化机制。这项工作比较了不同合金通过 RCS 处理后织构和机械性能的演变。通过显微硬度测量、不同温度和应变速率下的拉伸试验来评估机械性能,以评估应变速率敏感性。结果表明,经过两次 RCS 处理后,6061 和 5754 合金在 300°C 下表现出相对较高的应变速率敏感性。此外,5754、6061 和 7075 合金的硬度分别增加了 27%、22%、15%。显示出由于不同的硬化机制而提高机械阻力的潜力。此外,通过 X 射线衍射获得极图并计算其取向分布函数来表征晶体织构。结果表明,三种铝合金表现出相同的趋势,即初始织构组分得以保留,但织构化体积有所减少。
由于暴露于高压气态氢,氢环境脆化 (HEE) 所引起的机械性能下降是液氢推进系统中许多材料面临的关键问题。自 20 世纪 80 年代初以来,美国国家航空航天局 (NASA) 一直在马歇尔太空飞行中心 (MSFC) 进行高压氢环境下的拉伸试验,以建立推进应用候选材料数据库。MSFC 过去常常在高压氢环境中以 0.005 in/in/min 的应变速率进行平滑拉伸试验,以评估材料的 HEE 敏感性。1 根据已发布的 NASA TM 的建议,拉伸试验应变速率近年来改为 0.0005 in/in/min。2 有充分的证据表明,平滑拉伸试验应变速率会影响合金 718、4340 钢、316 不锈钢和许多其他合金的 HEE 敏感性。 1,3–7 因此,以 0.005 英寸/英寸/分钟和 0.0005 英寸/英寸/分钟生成的数据显示,许多合金的 HEE 敏感性存在显著差异。
抽象的碳化硅陶瓷由于其高抗压强度,高硬度和低密度而被广泛用于装甲保护。在本研究中,开发了一种基于板块影响技术的实验技术来测量陶瓷材料的拉伸强度。由于陶瓷的强度不通过动态载荷对应变速率高度敏感,因此使e效率保持在失败位置保持恒定的应变速率。数值模拟被用于设计几种波动加工的板层的几何形状,该板在冲击时会产生脉冲形的压缩波,平滑的上升和下降时间范围为0.65至1 µs。这种减震板损坏的实验是在设定在200至450 m/s之间的撞击速度的SIC陶瓷上进行的。多亏了激光干涉法分析,目标后面速度可在给定的应变率载荷下测量均方根骨架强度。使用脉冲载荷和实验确定的脉冲强度,通过弹性塑料数值模拟评估了故障区中的应变速率。在适当的板板设计时,发现板撞击技术可以正确控制良好的应变速率载荷,左右在10 4 -10 5 s-1左右,可以达到相对较长的上升时间。这项工作有望提供合适的工具来研究陶瓷材料的高应变率行为。
摘要:本研究旨在实现超细晶粒 (UFG) Al 2024 合金在低于传统商用铝合金 (400-500 ◦ C) 温度下的超塑性。室温下通过高压扭转在合金中产生的 UFG 结构平均晶粒尺寸为 100 nm,具有非常高的强度 - 显微硬度 (HV 0.1) 为 286 ± 4,偏移屈服强度 (σ 0.2) 为 828 ± 9 MPa,极限拉伸强度 (σUTS) 为 871 ± 6 MPa,断裂伸长率 (δ) 为 7 ± 0.2%。在温度为 190 至 270 ◦ C、应变速率为 10 − 2 至 5 × 10 − 5 s − 1 的情况下进行了复杂的拉伸试验,并确定了流变应力、总伸长率和应变速率敏感系数的值。结果表明,UFG 合金在 240 和 270 ◦ C 的试验温度下表现出超塑性行为。首次在 270 ◦ C(0.56 T m )的异常低温和 10 − 3 s − 1 的应变速率下实现了 400% 的伸长率。超塑性变形后的 UFG 2024 合金具有比标准强化热处理 T6 后的强度(150–160 HV)更高的强度。
使用直接的数值模拟统计平面的湍流过滤量,分析了应变速率张量和热功能的耗散速率的成分的统计行为。HESSIAN的压力贡献以及组合的分子扩散和耗散项被发现在对角应变率成分的传输方程中起主要作用,并且具有小karlovitz数量的峰值动能的热能能量耗散速率。相比之下,领先顺序平衡在应变速率,涡度和分子耗散贡献之间保持较大的卡洛维茨数量,类似于非反应的湍流。与分子耗散贡献的幅度相比,压力和密度梯度之间的相关性以及压力梯度之间的相关性和压力HESSIAN在应变速率和耗散速率上弱化,而Karlovitz数量增加。这些行为已经用涡度,压力梯度和与应变率特征的压力HESSIAN特征向量的对齐方式进行了解释。还发现,在较高的karlovitz数字的增加时,还发现术语术语中的术语大小会增加,这是随着karlovitz数量的增加而增加的,这在详细的扩展分析的帮助下进行了解释。此扩展分析还解释了不同燃烧方案动能耗散率的主要顺序贡献。
摘要 提高汽车燃油经济性标准要求开发具有优异机械性能且经济可行的钢板。淬火和分配 (Q&P) 热处理旨在产生富碳的亚稳态奥氏体,该奥氏体在变形过程中转变为马氏体,从而提高强度和延展性。在工业成型操作中,变形温度往往与环境条件不同,应变速率往往超过准静态速率 (>0.001 s -1 )。在本研究中,在 0.0001 至 0.1 s -1 的应变速率下对强度为 980 和 1180 MPa 的 Q&P 钢进行拉伸试验,同时使用热电偶和热成像评估绝热加热。扫描电子显微镜断口分析用于识别延性失效的机制,并用 x 射线衍射测量残余奥氏体以评估奥氏体转变的程度。
比在空气中的要短。一般来说,由于应变速率较低和温度较高,疲劳寿命会降低。 环境修正系数 ( F en ) 定义为 LWR 环境 ( NW ) 中的疲劳寿命与空气中 ( NA ) 中的疲劳寿命之比,环境中的疲劳使用量 ( U en ) 为 F en 与空气中的疲劳使用量 ( U f ) 相乘所得。 包括环境在内的疲劳数据
研究了Sn-Bi-Cu、Sn-Bi-Ni、Sn-Bi-Zn、Sn-Bi-Sb合金的超塑性变形行为。本研究旨在测定Sn-Bi二元合金的应变速率敏感性指数m。在不同横梁速度下进行25、40、60和80 ℃拉伸试验,测定指数m。结果表明,指数m随Bi浓度和试验温度的增加而增大。在60和80 ℃时,Sn-Bi合金的指数m均超过了3.0,这是超塑性变形行为的阈值。研究发现,Sn-Bi共晶组织对亚共晶Sn-Bi合金的超塑性变形有显著的影响。