在十年内,移动软件领域取得了巨大的成功。景观也重组了,导致了2个移动平台的压倒性优势,这些移动平台现在共享市场:Android(Google)几乎为71%,iOS(Apple)为27%。但是,这个市场分裂仍然是移动开发人员的关注点。他们要么选择本地开发,但必须两次编写该应用程序,或者他们选择跨平台开发来编写单个代码库。无论是从市场上还是用户体验的角度来看[8],每种开发方法的利弊是定期辩论的。但是,随着气候变化的增加,全球经济和政治议程越来越多,越来越多的(移动)开发人员也关心他们创建的软件的可持续性。因此,从环境的角度比较开发实践是有用的,直到软件的脱碳成为主流实践为止。不幸的是,在面对这一挑战时,日常移动开发人员通常会独自发现自己。在[11]中,对经验丰富的开发人员进行的一项调查显示,尽管知识很少,但他们对软件的能源消耗确实很感兴趣。[18]的作者指出了移动开发人员在堆栈中提出的与能源相关的问题,急于了解其他人遇到的与电力有关的问题。从战es中,在实施阶段,环保移动开发人员可能指的是嵌入式系统[12]或移动特异性绿色模式[2]的代码气味目录。在此之前,编程语言的选择最近,他们可能会使用类似绒毛的工具自动清洁其能量代码的代码库[4],[7]。
在过去几年中,跨计算环境的神经成像分析的可重复性引起了人们的关注。已经部署了软件容器化解决方案,例如Docker和奇异性,以掩盖软件诱导的可变性的影响,但硬件体系结构的变化仍然不明显地导致了不清楚的结果。我们研究了硬件变异性对FSL Flirt Application产生的线性注册结果的影响,FSL Flirt Application是神经成像数据分析中广泛使用的软件组件。使用Grid'5000基础架构,我们使用两个软件包装系统(Docker and GUIX)研究了九种不同的CPU模型的效果,我们将所得的硬件变异性与随机圆形测量的数值变异性进行了比较。结果表明,硬件,软件和数值可变性导致类似幅度的扰动 - 尽管不相关 - 表明这三种可变性
深度过滤方法用于水处理和空气净化以及许多其他行业,例如食品加工和药品。这是一种高效的方法,因为它的适应性和捕获从Ultrafine(<0.1 µm)到细细的粒径的能力(≥0.1-<2.5 µm)和粗糙(≥2.5 - 10 µm)。深度过滤的主要特征是它使用多孔层的使用,这些多孔层将颗粒捕获整个滤清器材料,而不仅仅是在表面上。此设计允许深度过滤器在堵塞之前捕获更大体积的颗粒。非织造对于深度过滤是有利的,因为颗粒不仅在表面上,而且在基质本身内捕获。纤维的随机排列通过它们无法逃脱的曲折路径迫使颗粒。
生成的扩散模型在以人为本的形象生成中取得了巨大的成功,但是它们对连续状态空间的依赖使得执行硬性约束(例如物理系统中的保护法)极为困难。在本次研讨会中,我将引入一个完整的理论框架,以扩散在离散的马尔可夫过程中,超越了基于高斯的模型,以开发一种从根本上定义离散空间中扩散方式的公式。该框架使生成模型能够严格保留诸如材料生成的质量和多相流模拟的数量,即常规扩散模型失败的区域。i将提出数值实验,包括停电扩散,该实验从空状态而不是噪声生成图像,以证明这种方法的可行性和功能。通过在离散空间中建立正向和反向扩散的精确表述,这项工作为工程和科学建模的新应用打开了大门,弥合了Genai和现实世界中物理约束之间的差距。
摘要 - 如今,缩小 HEMT 器件的尺寸对于使其在毫米波频域中运行至关重要。在这项工作中,我们比较了三种具有不同 GaN 通道厚度的 AlN/GaN 结构的电参数。经过直流稳定程序后,96 个受测 HEMT 器件的 DIBL 和滞后率表现出较小的离散度,这反映了不可否认的技术掌握和成熟度。对不同几何形状的器件在高达 200°C 的温度下的灵敏度评估表明,栅极-漏极距离会影响 R 随温度的变化,而不是 I dss 随温度的变化。我们还表明,中等电场下的 DIBL 和漏极滞后表现出非热行为;与栅极滞后延迟不同,栅极滞后延迟可以被热激活,并且无论栅极长度的大小如何都表现出线性温度依赖性。
共同作者:GOHLKE,Martin(德国航空航天中心 (DLR));KUSCHWESKI 博士,Frederik(德国航空航天中心 (DLR));OSWALD,Markus(德国航空航天中心 (DLR));ABICH,Klaus(德国航空航天中心 (DLR));ALAM 博士,Tasmim(德国航空航天中心 (DLR));BLOMBERG,Tim(德国航空航天中心 (DLR));BISCHOF,Jonas(德国航空航天中心 (DLR));BOAC,Alex(德国航空航天中心 (DLR));BUSSMEIER,Andre(德国航空航天中心 (DLR));RÖDER,Niklas(德国航空航天中心 (DLR));WÜST,Jan Martin;SANJUAN 博士,Jose(德国航空航天中心 (DLR));SCHULDT 博士,Thilo(德国航空航天中心 (DLR)); BRAXMAIER, Claus 教授(德国航空航天中心 (DLR))
1 可再生能源研究中心(RERC),曼谷北国王科技大学,1518,Pracharat 1 Road,Bangsue,曼谷 10800,泰国;burin.y@tfi.kmutnb.ac.th 2 泰法创新研究所(TFII),曼谷北国王科技大学,1518,Pracharat 1 Road,Bangsue,曼谷 10800,泰国 3 曼谷北国王科技大学技术教育学院电气工程教师培训系(TE),曼谷 10800,泰国 4 南锡能源研究小组(GREEN),洛林大学,F-54000 南锡,法国; damien.guilbert@univ-lorraine.fr 5 皮特什蒂大学电子、通信和计算机学院,110040 皮特什蒂,罗马尼亚 6 ICSI Energy,国家低温和同位素技术研究与发展研究所,240050 拉姆尼库瓦尔恰,罗马尼亚 * 通讯地址:phatiphat.t@fte.kmutnb.ac.th (PT); nicu.bizon@upit.ro (NB)
摘要本文实验研究了与最大基数匹配问题的实例相遇时,通过D波商业化的模拟量子计算机的行为,这些问题被专门设计为难以通过模拟退火而解决。我们在各种尺寸的情况下基准一个D-Wave“华盛顿”(2倍),具有1098个操作码头,并观察到,除了其中最琐碎的最小的所有情况外,它都无法获得最佳的解决方案。因此,我们的结果表明,量子退火至少在D-Wave设备中实现,与类似的退火相同的陷阱,因此提供了其他证据,表明存在多项式的问题,即这种机器无法有效地求解最佳性。此外,我们研究了Qubits互连拓扑的程度,以解释后一种实验结果。特别是我们提供的证据表明,这些拓扑的稀疏性会导致人为膨胀大小的QUBO问题,可以部分解释上述令人失望的观察结果。因此,本文暗示,要释放量子退火方法的潜力,必须使用密度的互连拓扑。
Jean-FrançoisSilvain,LoïcConstantin,Jean-Marc Heintz,SylvieBordère,LionelTeulé-Gay等在液相键合中控制界面交换,可以为高功率和温度应用形成强可靠的Cu – SN焊接。ACS应用电子材料,2021,3(2),pp.921-928。10.1021/acsaelm.0c01040。hal-03153399
本手稿讨论了新的三合会输入双输出(TIDO)高增益DC-DC转换器首选用于微电网应用的有效分析。Tido Converter允许在输入处使用多个可再生能源发电机,并提供具有不同电压级别的双输出端口。Tido转换器具有高压增益,具有双向设施的多个端口,电压降低,当前应力和更好的工作效率。通过稳态分析,相关电压方程和波形详细介绍了所提出的转换器的电路配置。有效分析包括组件应力分析,损失分析和TIDO转换器的比较分析。使用PSIM软件模拟了建议的高增益TIDO DC-DC转换器。结果通过具有高晶粒输出电压的组件来验证各种组件和电流的电压,以有效的稳态工作性能。最后,有效地分析了15.45 kW,1000 V〜500 V 〜500 V DC-DC转换器中的中电压DC(MVDC)分布或混合电动汽车应用。