摘要:减少水源增加了对有效废水处理的需求。太阳驱动的藻类草皮洗涤塔(ATS)系统可以通过支持周围微生物组的发展和生长来补救废水,从而通过共生相互作用以高度动态的方式发挥和相互作用。Using ITS and 16S rRNA gene amplicon sequencing, we profiled the microbial communities of four microbial biofilms from ATS systems operated with municipal wastewater (mWW), diluted cattle and pig manure (CattleM and PigM), and biogas plant effluent supernatant (BGE) in comparison to the initial inocula and the respective wastewater substrates.废水驱动的生物膜在其生物多样性和结构上显着差异,表现出无接收性依赖性但依赖于底物的微生物群落的建立。核群落与水生环境的其他微生物相比是可比的,并由代谢性柔性原核生物(例如硝化剂,多磷酸盐蓄能和产生藻类剂产生的微生物)和氧基氧基含量摄影量所主导。引人注目的差异发生在真核群落中:虽然MWW生物膜的特征是生物多样性高和许多丝状(底栖)微藻,但农业废水喂养的生物膜由较少多样化的群落组成,由几乎不同的脑分类属于单位属于单粒细胞的葡萄球菌和sapriphopherty/saprriphropherty和saprriphertip/sapaprripherty和saprriphertip。这项研究促进了我们对基于ATS的废水处理过程中微生物组结构和功能的理解。
本报告是在以下人员的指导下编写的(按字母顺序排列):Luiza Campos (UCL)、Sam Drabble (WSUP)、Elise Jabagi (Aguaconsult)、Marta Koch (UCL)、Yvonne Magawa (ESAWAS)、Goufrane Mansour (ECOPSIS)、Priti Parikh (UCL) 和 Kushma Thapa (UCL)。此外,还得到了以下人员的大力支持:Zach White (GSMA) 负责数字化;Rosemary Campbell (WSUP) 负责技术指导;Jean-Marie Ily,(独立顾问) 负责总体审查;Harinaivo Anderson Andrianisa、Asengo Gerardin Mabia、Mahugnon Samuel Ahossouhe 和 Seyram Kossi Sossou (2ie) 负责瓦加杜古案例研究;Pritum Saha (WSUP) 负责达卡案例研究;Analia Saker (Aguaconsult) 负责麦德林案例研究; Emanuel Owako (WSUP) 负责纳库鲁案例研究;Bui Thi Thuy 和 Pham Nguyet Anh (TLU) 负责河内案例研究。
这使得我们能够在整个企业范围内采用一致的方法,利用服务和基于价值的决策来规划、管理和做出投资决策。它使用前瞻性的方法来预测风险的变化,告知何时应降低风险,并使用干预措施的层次结构来确定适当的解决方案。使用服务衡量框架 (SMF) 对每个解决方案的风险降低和增加的收益进行量化和分配价值。SMF 使用四种资本(自然、社会、人力和财务/建设)将风险和收益货币化。在 EDA 中运行优化时,将对解决方案进行评估,以确定最具价值的选项和相关的最佳实施时间,这也有助于在给定的财务约束内有效地降低项目级风险并实现所需的绩效目标。
沼气生产是污水处理的必需品,随着城市人口的增长以及该机构被要求管理其他有机废物流,DEP 预测未来沼气产量将会增加。我们的沼气是厌氧消化的副产品,厌氧消化是我们污水处理过程的支柱。在此过程中,微生物将有机废物分解成清洁、营养丰富的生物固体产品;其中一些物质会转化为沼气。在 Newtown Creek WRRF,我们已经证明我们可以在我们的消化器中共同消化其他有机材料,包括预处理的食物残渣。共同消化将在城市的有机废物管理计划中发挥关键作用;未来几年,我们将在其他 WRRF 实施共同消化。DEP 必须确保扩大共同消化计划产生的额外沼气得到有益利用,而不是燃烧掉。
• 方法 SOP 可在 WRF 网站上找到 https://www.waterrf.org/research/projects/interlaboratory-and-methods-assessment-sars-cov-2-genetic-signal-wastewater
生命支持系统 (LSS) 对载人航天至关重要;没有它们,人类就无法生存。即将到来的长期任务需要强大的环境控制 LSS (ECLSS),因为它们的日照和即时补给的前景有限。作为 LSS 的一部分,由于运输质量限制,水净化系统将需要高可靠性、可持续性和效率,因为常规供水将非常困难,而且为未来的栖息地补给成本高昂。这表明需要一种高效的处理方法和对每个废水源的再利用。机组人员会产生各种废水流,虽然目前并非所有废水流都经过处理,但栖息地的成功将需要对每条废水流进行处理和利用,作为“资源”而不是“废物”。这些废水流包括人类废水(尿液、粪便)、食物垃圾(盘子垃圾、不可食用的植物生物质)、湿度冷凝水、卫生用水(淋浴、口腔、洗手)和洗衣。由于长期运营,人们通常依赖成熟的技术。对于未来长期任务,这种模式必须转变,纳入以满足任务要求为基础的技术,而不是牺牲生产力来取代经过验证的现有技术能力。许多物理、化学和生物水处理技术已被证实并可用于陆地应用。在此,这些技术被收集到一个“工具箱”中,以在重力减小的情况下执行有效水净化步骤的可能功能。选择标准取决于方法(物理、化学或生物)、复杂性/组件、陆地性能和对太空生命支持的潜在适用性。利用这种“工具箱”方法为技术开发和选择未来架构提供了一种简化的方法,以直接响应动态空间生命支持要求。建立“工具箱”还可以有组织、高效地识别最合适的技术。从那里,可以进一步开发和适当评估最有可能配置为任务要求的技术。本演讲旨在全面回顾空间生命支持水净化要求和挑战,并提出可用技术的“工具箱”方法,以帮助完成为短期和长期 NASA 任务架构选择合适的 LSS 水净化的艰难过程。
氮作为微生物的底物的重要性可以通过氮,亚硝酸盐和硝酸盐的浓度来确定。一些微生物可以在共培养的4天内完全分解可甲酰丙基丁香[19]。这些包括假单胞菌sp。FV CCM 8810和根茎sp。CCM8811。假单胞菌细菌执行原发性生物降解并摧毁烷基自由基,而根茎菌株降解烷基胺丙基丙蛋白酶残基。但是,此过程只能在富含低分子量无机氮的培养基中有效。要执行快速而完整的生物降解,这些微生物需要可用的氮来源。在没有矿物质成分的悬浮液中,生物降解持续29天,这是相当长的时间[20]。