转座元素(TES)是DNA序列,可以围绕基因组移动,并在塑造地球生命的演变中发挥了重要作用。它们几乎在从细菌到人类的几乎所有生物中都发现。tes构成了人类基因组的一半,使其成为遗传变异和多样性的重要贡献(Lander等,2001; de Koning等,2011)。TE分为两个主要类别:DNA转座子和逆转录座子。dna transpo-sons通过“切割和剪切”的机械主义在基因组中移动,从一个位置切除TE并在新位置重新插入。另一方面,retransposon使用“拷贝和贴”机制,首先将TE转录为RNA,然后将其反向转录为DNA,然后将其插入基因组的新位置(Bourque等,2018)。可以引起可能为寄主生物提供优势或缺点的突变(Payer and Burns,2019; Senft and Macfarlan,2021)。虽然某些TE插入可能会破坏基因,从而导致功能丧失(付款人
Nicotiana Benthamiana是一种在植物生物学和生物技术中广泛采用的模型生物。自2012年最初发行以来,其基因组研究已落后。为了进一步提高其实用性,我们生成和相位的同种异体二磷酸n. benthamiana的完整的2.85 GB基因组组装,所有19个centromeres和38个端粒完全分析。我们发现,尽管甲酸溶剂粒粒子被TY3/GYPSY逆转录座子广泛主导,但基于卫星的centromeres在N. Benthamiana中令人惊讶的是,在N. Benthamiana中,有11个Cendromeres中有11个由超级范围层面卫星阵列展出。有趣的是,富含卫星的和无卫星的丝粒被独特的吉普赛逆转录子广泛入侵,其中CENH3蛋白更优选地占据了CENH3蛋白,这表明它们在中心仪功能中至关重要。我们证明rDNA是丝粒卫星的主要起源,线粒体DNA可以用作Centromere的核心成分。亚基因组分析表明,卫星阵列的出现可能会在多倍体化后基因组休克期间驱动着丝粒的形成和成熟。总的来说,我们提出了本氏菌Centromeres通过Neocentromere的形成,卫星扩张,逆转录转座子富集和mtDNA整合而发展。
长期散布的元素-1(LINE-1)反转座子是哺乳动物杂物中丰富的转座元件,代表了人类或混血基因组的几乎五分之一。他们的高拷贝数来自逆转录位置,这是一种副本和糊状机制,通过该机制,线1元素在整个镀铬中散布,并在新的Geno-Mic位置引入顺式调节元素。尽管只有相对较小的line-1元素在现代人类中仍具有跨位置活跃,从而导致遗传变异和偶尔遗传疾病,但它们的过去活性具有深远的高阶基因组结构和功能。行1元素积聚在B室(与抑制染色质相关的拟菌素结构域)中,并在核和核仁周围的建立和/或增强和聚集(Solo-Vei等人。2016; Lu等。2021)。一致地,线1元素与Giemsa/quinarcine-阳性带(g/q频段)密切相关,该带表示代表中期染色体上的杂化物(Solovei et al。2016)。在更具区域规模的情况下,行1元素经常con-
作用于RNA(ADARS)的摘要腺苷脱氨酶是将腺苷转化为双链RNA中的插入(RNA编辑A-TO-I)的酶。adar1和adar2先前被报道为HIV-1前病毒因素。这项研究的目的是研究HIV-1表达期间ADAR2核糖核蛋白蛋白复合物的组成。通过在表达HIV-1然后进行质谱分析的细胞中使用双标记亲和力纯化程序,我们确定了10个非核糖体ADAR2-相互作用因子。先前发现了与长的散布元素1(Line1或L1)核糖核颗粒相关的这些蛋白质的很大一部分,并调节L1逆转录子的生命周期。考虑到我们先前证明ADAR1是Line-1逆转录座子活性的抑制剂,我们研究了ADAR2是否也起着相似的功能。为了达到这个目标,我们在过表达或消融的ADAR2的细胞中进行了特定的细胞培养逆转录分析。这些实验揭示了ADAR2作为L1反转座的抑制剂的新功能。此外,我们表明ADAR2结合了基底L1 RNP复合物。
嵌合抗原受体(CAR)T细胞疗法改变了恶性肿瘤免疫疗法的景观,从根本上改变了传统的癌症治疗策略。然而,对T细胞转染的病毒载体的依赖构成了局限性,从而阻碍了这种有希望的治疗方法的更广泛应用。使用非病毒载体用于CAR-T细胞制备,在下一代疗法中已成为一种更通用和可持续的替代方法。转座元素(TES)是1940年代芭芭拉·麦克林托克(Barbara McClintock)在玉米中首先发现的(1)(1)的移动DNA序列,这些序列是由由反向末端重复序列(ITRS)和转座酶组成的基因片段组成的。该酶有助于转座子从其原始DNA位点切除,并将其整合到新的基因组位置。可以将其分为逆转座子,并切成两个主要类别的转座机制(2)。剪切的转座子需要对两种ITR的转座酶识别,以从其源中切除DNA转座子并将其整合到其他地方(3)。这种固有的插入DNA的能力使剪切的转座可以用于基因组操纵的强大工具(4-7)。
栽培的树莓 (Rubus idaeus L.) 最常见的果实是小而红、香气浓郁的果实。它们的颜色主要来自花青素,这是一种水溶性多酚色素,但除了红色果实外,还有一些品种的果实呈黄色和杏色。在这项研究中,我们使用了多组学方法来阐明树莓杏色果实颜色的遗传基础。利用代谢组学,我们对红色和杏色树莓果实中的花青素进行了量化,并证明与红色果实树莓相比,杏品种“Varnes”的果实仅含有少量浓度的花青素化合物。通过执行 RNASeq,我们揭示了杏果实‘Varnes’中花青素生物合成途径基因的差异表达模式,并在使用长读牛津纳米孔技术测序进行全基因组测序后,我们在花青素合酶(Ans)基因的第二个外显子中发现了一个 CACTA 样转座因子(TE),它导致预测的 ANS 蛋白截短。PCR 证实了无关的红果品种‘Veten’中转座子以杂合形式存在,这表明杏果实颜色是红色的隐性遗传,并且可能在覆盆子种质中广泛存在,这可能解释了为什么杏子形式在现代覆盆子育种种群中会定期出现。
真核生物的基因组主要由散布的重复序列的各种家族组成,包括逆转录座子和可转移和内源性病毒元素。普遍的观点是,基因组重复体的多样家庭应被视为寄生虫或“垃圾DNA”(Bourque等,2018)。但是,可以遵循族谱树,或这些元素进化发展和分布的途径,因此,我们的理解应得到完全修订。重复元素在系统生物学和医学意义上扮演着角色,远远超出了“垃圾DNA”和病毒化石(Wells and Feschotte,2020年)。最近的研究越来越多地表明,基因组的基本成分,即使不是我们基因组的最基本成分,它具有病毒源,并且作为移动遗传介体的病毒在遗传进化中始终起着至关重要的作用(Cosby等,2019)。基因组的演变与克服和固定综合事件有关。随着每个重要的进化步骤,基因组中的移动遗传因素数量急剧增加。自从生活开始以来,就没有一个生物体没有所有这些不同的移动元素。在基因组的形成中,我们可以追踪涉及无数不同外观的移动元素的许多过程。基因组不是无数意外突变及其选择的最终产物,而是一种原始外部病毒感染的生活沉积物,这种矿床经常被回收,并且像编年史一样,重新解释(Vassilieff等,2023年)。为了完全发展,移动元素必须与他们的宿主基因组建立共同的关系(Gebrie,2023)。移动元件和宿主基因组的进化系统发育树显示强相关性(Kalendar等,2004; Kalendar等,2008; Moisy等,2014; Kalendar等,2020)。内源性逆转录病毒,也属于逆转录病毒,是单链
抽象背景:在几种真核生物中,DNA甲基化发生在许多基因的编码区域内,称为基因体甲基化(GBM)。虽然DNA甲基化对转座子沉默和重复DNA的作用良好,但基因体甲基化与转录抑制无关,并且其生物学重要性尚不清楚。结果:我们报告了一种新发现的植物中的GBM类型,该类型是在所有细胞中的动态甲基化修饰剂(包括种系)中的建立添加和通过动态甲基化修饰剂的去除。Div>在动态GBM基因处的甲基化通过DRDD去甲基化途径去除,并通过未知的从头甲基化来源添加,很可能是维持甲基转移酶Met1。我们表明,动态GBM状态存在于超过1亿年的不同谱系的同源基因上,表明进化保存。我们证明,与其他基因体甲基化基因相比,动态GBM与基因体内的启动子或调节染色质状态的存在密切相关。我们发现动态GBM与跨发育和不同生理条件的增强基因表达可塑性有关,而稳定的甲基化GBM基因表现出降低的可塑性。动态GBM基因在DRDD突变体中表现出降低的动态范围,表明DNA去甲基化与增强基因表达塑性之间存在因果关系。结论:我们在调节基因表达可塑性方面提出了一个新的GBM模型,其中包括一种新型的GBM类型,其中增加的基因表达可塑性与DNA甲基化作者和橡皮擦的活性以及调节性染色质状态的富集有关。