• 泥沙输送会放大水力建模误差(一维和二维)
摘要 - 学习动力系统需要稳定未知的动态,以避免状态爆炸。但是,标准加固学习(RL)方法缺乏正式的稳定保证,这限制了其用于控制现实世界动态系统的适用性。我们提出了一种新型的政策优化方法,该方法采用Krasovskii的Lyapunov家族作为稳定性约束。我们表明,即使在建模误差下,也可以使用原始偶的方法解决此稳定性受限的优化问题,即使在建模误差下也恢复了基础系统的稳定策略。将此方法与模型学习结合在一起,我们提出了一个基于模型的RL框架和正式稳定性保证,Krasovskii-限制性增强学习(KCRL)。我们在模型学习中使用基于内核的特征表示KCRL,并提供了样本复杂性保证,以学习针对基础系统的稳定控制器。此外,我们从经验上证明了KCRL在学习分布式电源系统的在线电压控制中学习稳定政策的有效性。我们表明,KCRL在各种真实的太阳能和电力需求中稳定该系统,而标准RL方法通常无法稳定。
摘要:在本文中,提出了一种基于扩展状态观察者(ESO)(ESO)的低速汽车移动机器人(CLMR)的轨迹跟踪控制策略,并提出了后台控制控制,以解决轨迹跟踪的问题问题,该问题是由模拟错误和外部干扰物引起的轨迹跟踪准确性降解。首先,将建模误差和外部干扰引入了CLMR的理想运动学模型中,并利用一组输出方程将耦合的,不向导的干扰运动学模型拆分为两个相互独立的子系统。接下来,基于线性ESO估算子系统中的干扰,并通过Lyapunov方法证明了所提出的观察者的收敛性。最后,使用后备控制控制器设计具有干扰补偿的控制器,以完成CLMR的轨迹跟踪任务。仿真和实验结果显示了拟议的控制方案的有效性。
电池的剩余放电能(RDE)是估计车辆剩余范围的重要值。基于预测的计算RDE的方法已被证明适合提高能量估计精度。本文旨在通过将新颖的负载预测技术与模式识别纳入RDE计算,以进一步提高估计准确性。对于模式识别,将驱动段数据分类为不同的用法模式,然后根据每个模式的功能设计了基于规则的逻辑来识别这些模式。为了进行功率预测,使用聚类和马尔可夫建模方法将数据从数据分组和定义功率水平为状态,并找到每种状态到国家过渡的概率。为每个模式定义了此数据,以便逻辑可以告知应使用哪些数据来预测未来的功率概况。根据预测的功率曲线,RDE是根据预测负载和预测电压的乘积计算得出的,该电压是从一阶电池模型中获得的。使用电池循环器数据在模拟和实时测试了所提出的算法,并与其他基于预测的方法进行了比较。所提出的方法证明对建模误差具有理想的准确性和鲁棒性。这项研究的主要结论是使用模式识别可以提高RDE估计的准确性。
摘要:本文介绍了基于管子的模型预测控制(MPC),用于自主铰接式车辆的路径和速度跟踪。这项研究的目标平台是具有不可轴轴的自主铰接式车辆。因此,铰接角和车轮扭矩输入由基于管的MPC确定。所提出的MPC旨在实现两个目标:最大程度地减少跟踪误差并增强对干扰的鲁棒性。此外,自动铰接式车辆的横向稳定性被认为反映了其动态特性。使用局部线性化制定了MPC的车辆模型,以最大程度地减少建模误差。参考状态是使用基于线性二次调节器的虚拟控制器确定的,以提供MPC求解器的最佳参考。通过在噪声注入传感器信号的基础算法的模拟研究中评估了所提出的算法。仿真结果表明,与基础算法相比,所提出的算法达到了最小的路径跟踪误差。此外,提出的算法对多个信号表现出对外部噪声的鲁棒性。
摘要:本文将新颖的 LPV(线性参数变化)模型和 MPC(模型预测控制)方法应用于电动垂直起降飞机的倾斜过渡过程,该飞机具有六个分布式电动旋翼和固定翼,用于平飞,其中两个旋翼可倾斜以在从悬停到稳态平飞的倾斜过渡期间产生可变推力矢量,其余四个旋翼不能倾斜。在平飞过程中,固定翼引起的气动升力保持飞行高度。基于由倾转旋翼角位置和故障旋翼速度预定的标称倾斜轨迹,通过沿倾斜轨迹线性化非线性 eVTOL 飞机模型,基于显著减少的线性时不变模型数量构建了离散时间 LPV 模型,其中倾转旋翼角度和故障旋翼速度可以实时测量。提出了一种基于σ移位H 2 范数的LPV建模误差评估方法,并设计了具有动态参考补偿的自适应模型预测控制器。仿真研究表明,基于转子故障倾斜过渡LPV模型的自适应MPC策略是成功的。
为了确定是否可以安全地执行所需的操作,谨慎的导航员必须了解其车辆定位系统的当前空间不确定性以及用于描绘战区的导航地图模型的空间不确定性。从安全导航的角度来看,了解数据的准确性与数据本身一样重要。本文讨论了 GPS 车辆定位误差和特定于水深地图模型(图表)的相对较大的数据建模误差对电子海图 (EC) 的影响。它提出并演示了软件解决方案,这些解决方案可以统计评估这两种空间不确定性,并在 EC 环境中以图形方式集成这两个随机模型。本文还记录了加拿大水文服务局进行的一项实验,旨在确保实时 DGPS 用户计算出统计上有效的位置误差估计。实验使用传统的伪距冗余实时误差分析获得了位置误差估计,并对其进行了地面实况分析。利用这些地面实况信息,根据经验确定了改进的伪距误差模型。新的伪距误差模型使用 Novatel GPS 接收器计算出的估计伪距方差不断更新,而不是应用最小二乘调整中典型的恒定先验伪距方差。这种动态范围误差模型有效地减少了观测到的误差与其预测的误差估计之间的统计偏差。改进的范围误差模型还显著提高了位置解的性能。修改后的软件计算的所有 DGPS 位置的定位精度均优于 0.5 米。
摘要 本文提出了一种稳健的非线性飞行控制策略,该策略基于增量控制行为和反步设计方法相结合的结果,适用于由严格反馈(级联)非线性系统描述的飞行器。该方法称为增量反步,使用执行器状态和加速度估计的反馈来设计控制行为的增量。与反步相结合,所提出的方法可以逐步稳定或跟踪非线性系统的外环控制变量,同时考虑较大的模型和参数不确定性以及外部扰动和气动建模误差等不良因素。这一结果大大降低了对建模飞机系统的依赖,克服了传统的基于模型的飞行控制策略的主要稳健性缺陷。这种建议的方法意味着在动态模型的准确知识和飞行器传感器和执行器的准确知识之间进行权衡,这使得它比基于识别或模型的自适应控制架构更适合实际应用。针对一个简单的飞行控制示例,仿真结果验证了所提出的控制器在气动不确定性条件下相对于标准反步方法的跟踪能力和卓越的鲁棒性。
摘要 - 对电荷状态(OCV-SOC)特征的开路电压对于电池管理系统至关重要。使用OCV-SOC曲线,可以实时估算SOC和电池容量。准确的SOC和容量信息对于执行大多数电池管理功能很重要,以确保安全,高效且可靠的电池组电源系统。文献中已经报道了许多方法,以改善SOC估计和电池容量估计。这些方法着眼于各种估计和过滤技术,以减少由于滞后和放松效应而导致的测量噪声和不确定性的影响。即使所有现有的SOC估计方法都取决于OCV-SOC的表征,但很少关注OCV-SOC表征错误的可能性以及OCV-SOC曲线对SOC和容量估计的不确定性的影响。在本文中,这是一系列三篇论文的第一部分,讨论了整个电池管理系统中OCV-SOC建模误差的效果。OCV-SOC曲线中不确定性的不同来源包括细胞间变化,温度变化,老化漂移,周期速率效应,曲线拟合误差和测量/估计误差。建议的不确定性模型可以纳入电池管理系统中,以提高其安全性,性能和可靠性。索引项 - OCV-SOC建模,OCV建模,OCV-SOC表征,OCV表征,锂离子电池,电荷估计,电池管理系统。
锂离子电池(LIB)在各种磁场中发现了广泛的应用,例如电气传输,固定存储和便携式电子设备。电池管理系统(BMS)对于确保LIB的可靠性,效率和寿命至关重要。最近的研究见证了高级BMS中基于模型的故障诊断方法的出现。本文对LIB的基于模型的故障诊断方法进行了全面综述。首先,现有文献中广泛探索的电池模型分为基于物理学的电化学模型和电气等效电路模型。第二,描述电池故障的电气动力学的一般状态空间表示。然后详细阐述了状态向量和参数矩阵的识别。第三,两个电池故障的故障机理(包括过度拨动/过度过度故障,连接故障,短路故障)和传感器故障(包括电压传感器故障和电流传感器故障)。此外,还详细阐述了不同类型的建模不确定性,例如建模误差和测量噪声,老化效应,测量异常值。然后将重点放在观察者的设计上(包括在线状态观察员和离线状态观察员)。还提出了用于电池故障诊断的典型状态观察者的算法实现。最后,提供了讨论和展望来设想一些可能的未来研究方向。