序号 优先研究主题领域 2025 1 生物能源 1.木质纤维素棕榈油废弃/收获残渣生物转化成生物燃料原料脂质(脂肪油)的技术。 2. 开发基于油或棕榈生物质的生物碳氢化合物和含氧化合物BBN生产技术,可在小规模/本地规模应用。 3. 开发利用棕榈油废液沼气/生物甲烷生产液体生物燃料的温和技术。 4、甘油转化生产丙二醇、乳酸、聚甘油等大宗化工产品的技术开发。 5. 开发更有效、可回收、更环保的生物柴油生产催化剂。 6. 优化商业模式/棕榈油基生物能源产品(BBN/沼气/生物质)的供应和利用商业化。 7. 全面研究强制性BBN实施的经济价值、可持续性和影响。 2 生物材料和油脂化学品
摘要一致性检查的基本任务是计算给定事件日志和过程模型之间的最佳对齐。通常,众所周知,这种不可避免地会产生高计算成本,从而导致实践中的可扩展性差。攻击复杂性的一个角度是开发利用基础过程模型的特定句法限制的对齐算法。在本文中,我们研究具有独特标签的过程树的对齐。这些模型是感应矿工的输出,这是领先的过程挖掘工具也使用的最新过程发现算法家族。我们的主要贡献是一种新型算法,该算法可以有效地构建具有独特标签的过程树的操作对齐,即在多项式时间内。这与问题是NP完整的一般过程树相反,并且问题是PSPACE完整的,并且一般的工作流网络。我们在PM4PY中提供了算法的概念验证实现,并根据现实生活事件日志进行了评估。
在基础设施方面,我们与 Glaspoort 一起快速发展的光纤覆盖范围现已覆盖荷兰 57% 的地区。在蓬勃发展的光纤市场中,我们积极与市场新进入者合作,以增强我们的网络基础设施。同时,我们淘汰过时的网络和 IT 系统,以节省能源并减少中断。例如,作为铜线关闭计划的一部分,我们最近淘汰了近 300 万条旧铜线。与市政当局达成的成功协议在 2023 年克服获得光纤使用许可等挑战方面发挥了关键作用。确保移动基站的新位置,特别是在城市地区,引发了对可持续性和当地影响的考虑,因此与政府实体的合作至关重要。我们已经对所有移动网络站点进行了现代化改造,并将重点转移到与其他创新者合作开发利用这种基础设施的解决方案。然而,围绕 3.5 GHz 拍卖的不确定性给电信公司带来了挑战,他们需要明确的长期投资。
以越来越多的精度控制电子对于经典和量子电子既重要。自激光发明以来,驯化了连贯的光的每个属性,使其成为科学,技术和医学最精确的工具之一。连贯的控制涉及将光的精美定义特性转导向电子系统,从而将连贯性赋予其组成电子的属性。相干控制中的早期开发利用了高斯激光束和空间平均测量。激光的空间结构和轨道角动量为凝结物质系统中的电子和准粒子激发提供了额外的自由度。从这个角度来看,我们首先介绍了半核对器中相干控制的概念。然后,我们继续讨论结构化光束在相干控制中的应用以及对空间分辨出术检测的要求。随后,我们介绍了使用圆柱矢量束和具有结构相位前部的激光束进行的最新实验的概述。最后,我们提供了这些发展和未来感兴趣的方向的视野。
大自然已经创造出了性能和机制远远超出工程材料行业现有知识的材料。生物材料卓越的效率,例如其依赖于弱成分的卓越性能、单位质量的高性能以及除机械性能之外的多种功能,主要归因于其层次结构。仿生材料的关键策略包括形成作为灵感的生物材料的基本理解,将这种基本理解与工程需求/问题联系起来,并制造具有相应增强性能的层次结构材料。现有的大量关于生物和仿生材料的文献可以从功能和机械方面进行讨论。通过基本的代表性特性和材料,仿生材料的开发利用生物系统的设计策略,以创新的方式增强材料性能,以用于各种实际应用,例如海洋、航空航天、医疗和土木工程。尽管目前面临挑战,但仿生材料已成为促进现代材料行业创新和突破的重要组成部分。
随着能源危机和环境污染的日益严重,开发利用可再生能源已成为保障能源安全、可持续供应的不可或缺的选择。近年来,风电、光伏等可再生能源装机容量迅速增加,电力系统的发电来源从以化石能源为主转变为可再生能源的高渗透率。不幸的是,可再生能源固有的不确定性和多变性将给当今的电力系统带来巨大的运营挑战。同时,智能逆变器、高级通信协议和机器学习等新兴技术为更好地整合高渗透率可再生能源提供了更多的监管手段。本文对几种新兴的高渗透率可再生能源整合 (HPRI) 技术进行了简要回顾。本文的主要目的是介绍这些技术的基本概念、原理以及在智能电网中的主要应用。此外,还讨论了这些技术面临的挑战和未来前景。本文试图对近年来可再生能源并网领域的新兴技术研究进行全面的回顾。
对环状RNA的广泛研究揭示了它们的多种作用,从分子调节剂到癌细胞系中铁死亡的关键影响因素。研究结果强调了环状RNA在调节影响癌症发展关键方面的分子通路方面的重要性,包括细胞存活、增殖和转移。详细分析描述了这些通路,揭示了环状RNA影响铁死亡的分子机制。基于最近的实验结果,该研究评估了靶向环状RNA诱导铁死亡的治疗潜力。通过识别与癌症病因相关的特定环状RNA,该分析为开发利用癌细胞弱点的靶向疗法铺平了道路。本综述巩固了对铁死亡和环状RNA的现有理解,强调了它们在癌症治疗中的作用,并为这一动态领域的持续研究提供了动力。关键词:环状RNA、铁死亡、癌症治疗、分子调控
摘要:有机光伏和光电子中具有改进的光能转化的固态材料,预计将通过通过操纵向单元状态的自旋转换过程来实现高效的三重态 - 三重态 - 三重态 - 三重态 - 三重态 - 三重态 - 三胞胎 - 三胞胎(TTA)。在这项研究中,我们从分子构象的显微镜视图中阐明了TTA延迟荧光的自旋转换机制。我们使用时间分辨的电子顺磁共振通过使用时间分辨的电子磁共振,研究了三胞胎状态(TT状态)电子自旋极化(TT状态)的时间演变。我们澄清说,单线TT的自旋状态人群通过三胞胎和五重骨TT状态在激子扩散期间的自旋相互转换增加,并且在两个三重态之间进行了随机取向动力学,以调节交换相互作用,从而实现了高分转化发射的高量子量产率。这种理解为我们提供了用于开发利用TTA的有效光能转换设备的指南。
氯 - 阿尔卡利行业对加拿大的经济至关重要,生产基本化学物质,例如氯和苛性苏打,这些化学物质用于水处理,纸浆和纸张,采矿和制造等关键领域。这些化学物质支持塑料,药品和其他工业用品的生产,同时在确保清洁饮用水和有效的废水处理方面发挥了至关重要的作用。加拿大的氢策略7将氯 - 阿尔卡利工业确定为生产低碳氢的关键机会。目前,该行业每天生产约190吨氢作为副产品,其中大部分被排放到大气中。加拿大通过开发利用这种副产品途径与其他关键的氯烷烃产品共同生产氢的项目,可以利用其成熟的氯藻产业。捕获和净化这种浪费的氢为生产低成本的低碳氢提供了一种经济的解决方案,该解决方案需要最少的资本投资,以修改行业内的现有过程,并通过有效地利用现有工业基础设施来有效地利用低碳氢经济的发展。
在努力实现脱碳并履行《巴黎协定》承诺的世界中,海上风电将成为未来的主要能源。尽管欧洲一直是海上风电领域的领导者,而且世界上许多其他国家也在开发利用这种可持续可再生能源的优势的能力,但爱尔兰在海上风电开发方面进展缓慢,迄今为止选择专注于陆上资源。然而,爱尔兰现在正充分利用海上风电带来的机遇,并认识到由于气象条件和广阔的海域,海上风电资源的价值和规模。事实上,2019 年《气候行动计划》中提出的首个海上风电国家目标已在 2020 年《政府计划》中得到提高。现在的目标是到 2030 年达到 5 吉瓦,并计划在未来开发数十吉瓦。例如,政府已表示,未来可以在爱尔兰西海岸开发 30 吉瓦的浮动海上风电 (FLOW)。 FLOW 技术的快速发展将改变游戏规则,使这种场景成为可能,该技术可以部署在爱尔兰深水区。