Academia.edu 使用 Cookie 为用户提供个性化内容、定制广告和改进的体验。使用该网站即表示您同意他们通过 Cookie 收集信息。有关更多详细信息,请查看他们的隐私政策。半导体材料的本征载流子浓度可以使用特定公式计算。这涉及到与材料相关的系数、开尔文温度、带隙能量、玻尔兹曼常数以及砷化镓或锗特定常数等参数。《微电子学:电路分析与设计》是一本针对本科电气和计算机工程专业学生的教科书。它侧重于电路分析和设计,涵盖模拟和数字电子学。本书旨在通过清晰的写作和实用的教学法对学生友好。对于第四版,它包括更新和修订,以灵活覆盖运算放大器。
摘要。我们报告了在基于超导微谐振器的定制高灵敏度光谱仪中在毫开尔文温度下进行的电子自旋回波包络调制 (ESEEM) 测量。谐振器的高品质因数和小模式体积(低至 0.2pL)允许探测少量自旋,低至 5 · 10 2 。我们在两个系统上测量了 2 脉冲 15 ESEEM:铒离子与天然丰度 CaWO 4 晶体中的 183 W 核耦合,铋供体与 28 Si 同位素富集的硅基板中的残留 29 Si 核耦合。我们还测量了硅中铋供体的 3 脉冲和 5 脉冲 ESEEM。对于近端核的超精细耦合强度和核自旋浓度都获得了定量一致性。
摘要 虽然条纹光学高温计(SOP)系统在冲击温度测量中得到了广泛的应用,但其可靠性一直备受关注。本文利用两个已校准的不同色温的普朗克辐射器,通过多通道和单通道两种校准标准对比,对SOP系统进行了校准和验证。针对测量系统专门设计了高色温标准灯和多通道滤波器。为验证SOP系统的可靠性,测量数据与标准值的相对偏差小于5%,证明了SOP系统的可靠性。此外,提出了一种分析SOP系统不确定度和灵敏度的方法。在‘神光二号’激光装置上进行了一系列激光诱导冲击实验,以验证SOP系统在数万开尔文温度测量中的可靠性。实验中测得的石英温度与前人的研究结果一致,证明了SOP系统的可靠性。
量子异常霍尔效应(QAHE)已在磁掺杂的拓扑绝缘子中进行了实验观察到。然而,主要归因于吸毒者磁掺杂的超高温度(通常低于300 mk),成为潜在应用的艰巨挑战。在这里,提出了一种非磁性策略来产生铁磁性并在拓扑绝缘子中实现Qahe。我们从数值上证明,在BI 2 SE 3,BI 2 TE 3和SB 2 TE 3中,非磁性氮或碳取代可以诱导磁矩,而只有氮掺杂的SB 2 TE 3系统才能表现出远距离的铁磁性,并保存大型的散装带隙。我们进一步表明,其相应的薄膜可以在17-29开尔文的温度下携带Qahe,这比相似系统中典型实现的温度高两个数量级。我们提出的非磁性掺杂方案可能会阐明拓扑绝缘体中高温QAHE的实验性实现。
令人吃惊的是,可以从量子系统中获得的能量并不由系统的能量决定。这一违反直觉事实的物理来源是,开尔文和普朗克提出的热力学第二定律禁止从热平衡态循环提取功 [4]。因此,热状态通常被称为被动 [5]。因此,在循环(幺正)过程中可以提取的最大功由其平均能量的“非被动”部分决定。这个量定义为状态平均能量与相应被动状态之间的差,被命名为 ergotropy(来自“ergo”表示功和“trope”表示变换),类似于熵这个词 [6]。在没有相干性的系统中,非相干性 ergotropy 仅取决于能级的布居分布。然而,在能级之间存在相干性的情况下,出现了一种新的非经典贡献,即相干性 ergotropy [7]。值得注意的是,它是非负的,表明一致性可以增强系统的工作生产能力。
量子点中的自旋量子比特为可扩展量子信息提供了一个颇具吸引力的平台,因为它们与半导体制造兼容 [1, 2]、具有长相干时间 [3],并且能够在超过 1 开尔文的温度下工作 [4, 5]。量子比特逻辑可以通过脉冲交换相互作用 [6–8] 或通过驱动旋转 [9–12] 来实现。在本文中,我们表明,这些方法可以组合起来,在单个设备中执行大量本机双量子比特门,从而减少执行量子算法的操作开销。我们展示了在高于 1 开尔文的温度下,单量子比特旋转以及双量子比特门 CROT、CPHASE 和 SWAP。此外,我们实现了绝热、非绝热和复合序列,以优化量子比特控制保真度和门时间。我们发现可以在 67 纳秒内执行的双量子比特门,通过理论分析实验噪声源,我们预测保真度将超过 99%。这有望使用可嵌入量子集成电路经典电子器件的量子硬件实现容错操作。双量子比特门是量子信息科学的核心,因为它们可用于创建复杂度超出经典模拟范围的纠缠态 [13],并最终可实现实际相关的量子算法 [14]。因此,优化双量子比特门是所有量子比特平台的核心方面 [15]。在量子点系统中,可以利用相邻量子点中自旋量子比特之间的交换相互作用自然地实现双量子比特门 [1]。当交换能量远大于量子比特的塞曼能量差时,脉冲相互作用会驱动 SWAP 振荡 [1, 6],而当塞曼能量差远大于交换能量时,则会导致 CPHASE 振荡 [16]。还需要实现单量子比特门来访问完整的两量子比特希尔伯特空间,这需要量子比特之间的可区分性。这通常是通过自旋轨道耦合 [3] 或集成纳米磁体 [17, 18] 来实现的,从而产生显著的塞曼能量差。在这种情况下实现高保真 SWAP 门需要极大的
富兰克林·米勒是威斯康星大学麦迪逊分校机械工程系副教授。在加入该大学任教之前,米勒教授曾在 NASA 戈达德太空飞行中心的低温工程部门工作。在 NASA 任职期间,他致力于开发用于太空飞行任务的冷却系统,包括詹姆斯·韦伯太空望远镜上运行的系统。米勒教授拥有麻省理工学院机械工程博士学位和物理学辅修学位。他的博士研究工作包括模拟超流体 3He-4He 混合物的热力学行为以及开发一种用于低于 1 开尔文冷却的新型超流体焦耳-汤姆逊制冷循环。米勒教授指导过 23 名硕士生和 14 名博士生。自 2009 年以来,他还担任低温工程会议董事会成员,并担任 2013 年低温工程会议的项目主席
2018年对于计量来说无疑是历史性的一年! 11 月第 26 届国际计量大会 (CGPM) 期间记录的国际单位制 (SI) 单位的重新定义标志着测量界的一个转折点:所有 SI 单位,特别是国际单位制单位的非物质化千克,其定义自 1889 年以来就没有改变。LNE 和法国国家计量网络的研究人员多年来的工作为这一转折点做出了巨大贡献,我特别想到我们的贡献得益于我们的瓦特天平(世界上三个、欧洲唯一的一个),千克的非物质化,以及我们对开尔文新定义的贡献,我们的工作使确定玻尔兹曼常数(k )在全球最佳水平。这一历史性事件也是一个机会,可以强调计量学对我们的社会、对我们同胞的安全、对我们企业的竞争力的重大贡献,并将我们的机构定位为国家和国际水平研究的关键参与者。
2018年对于计量领域来说无疑是历史性的一年! 11 月,第 26 届国际计量大会 (CGPM) 对国际单位制 (SI) 的单位进行了重新定义,这是测量领域的一个转折点:所有 SI 单位都从此不再物质化,尤其是千克,其定义自 1889 年以来从未改变。多年来,LNE 和法国国家计量网络的研究人员为这一转折点做出了巨大贡献。我特别想到了我们为千克的非物质化所做的贡献,这要归功于我们的瓦特天平,它是世界上三种瓦特天平之一,也是欧洲唯一的瓦特天平,以及我们对开尔文新定义的贡献,我们的工作使人们能够以世界最佳水平确定玻尔兹曼常数 (k)。这一历史性事件也是一个机会,可以强调计量对我们的社会、对我们同胞的安全、对我们企业竞争力的重大贡献,并使我们机构成为国家和国际研究领域的重要参与者。