时空扭曲是由于重力造成的。根据牛顿引力公式,如果任何物体的质量为零,那么引力就会为零。假设太阳和地球之间的情况,大约需要 8 分 20 秒,但如果太阳以某种方式消失,引力就会为零。我们都知道光比引力移动得快得多,因为引力是所有力中最弱的。那么引力怎么会比光快呢?花了 200 年才解决这个奇怪的情况。爱因斯坦的理论认为空间因行星的引力而弯曲。可以假设空间就像一张网,上面放着一些重物。这被称为时空扭曲。爱因斯坦从运动学(运动物体的研究)的角度提出了他的理论。他的理论是对洛伦兹 1904 年的电磁现象理论和庞加莱的电动力学理论的进步。虽然这些理论包括与爱因斯坦引入的方程(即洛伦兹变换)相同的方程,但它们本质上是为了解释各种实验(包括著名的迈克尔逊-莫雷干涉仪实验)的结果而提出的临时模型,这些实验极难融入现有范式。
摘要 我们展示了汉密尔顿行为的数字量子模拟,该行为控制着量子力学振荡器和光场之间的相互作用,通过引力效应在它们之间产生量子纠缠。这是通过利用玻色子量子比特映射协议和数字门分解来实现的,这些协议和数字门分解使我们能够在 IBM Quantum 平台中可用的量子计算机中运行模拟。在应用误差缓解和后选择技术后,我们展示了在两台不同的量子计算机中获得的实验保真度结果。所获得的结果保真度超过 90%,这表明我们能够对相互作用进行忠实的数字量子模拟,从而对光机械系统中通过引力手段产生量子纠缠进行忠实的数字量子模拟。
弦理论中的引力/规范理论对应 [1; 2; 3] 代表了在寻找量子引力的一般非微扰描述方面取得的令人振奋的进展。它假定具有固定时空渐近行为的某些量子引力理论与普通量子场论完全等价。我们可以将这种对应视为通过量子场论提供了量子引力理论的完整非微扰定义。然而,尽管有大量证据证明这种对应关系的有效性,但我们并没有深入了解时空/引力为何或如何从场论的自由度中出现。在本文中,我们将基于广为接受的规范理论/引力对偶的例子,论证引力图景中时空的出现与相应的传统量子系统中自由度的量子纠缠密切相关。我们首先会展示,与断开的时空相对应的某些量子态叠加会产生被解释为经典连通时空的状态。更定量地说,我们将在一个简单的例子中看到,减少量子态之间的纠缠
在一个多折的宇宙中,重力从纠缠中通过多重机制出现。结果,重力样效应出现在它们是真实或虚拟的纠缠粒子之间。远距离,无质量的重力是由无质量虚拟颗粒的纠缠导致的。大量虚拟颗粒的纠缠导致非常小的尺度上的重力贡献。多重机制也导致了一个离散的时空,具有随机的行走分形结构和非交通性几何形状,该几何形状是Lorentz不变的,并且可以用显微镜黑洞对时空节点和颗粒进行建模。所有这些恢复在大尺度上的一般相对论,半古典模型保持有效,直到比通常预期的尺度较小。重力可以添加到标准模型中。这可能有助于解决标准模型(SM)的几个开放问题,而没有重力以外的其他新物理学。这些考虑暗示了重力与标准模型之间的更强关系。
现代量子科学的基石——相干性、相关性和纠缠——可以为引力的本质提供独特的探索。量子系统控制的不断发展已经使超精确测量引力甚至更奇特的现象(如引力波)成为可能。虽然纠缠的量子现象被广泛认为是提高此类测量精度的资源,但它也可以以全新的方式为引力提供探索。例如,引力的量子力学公式可能对量子物质中纠缠的产生和行为具有至关重要的影响,而纠缠的量子态使我们能够构建等效原理等经典概念的真正量子测试。
在量子理论的界面上理解引力的基本性质是理论物理学中一个重要的未决问题。最近,对引力量子系统的研究,例如在位置的量子叠加中准备的、以引力场为源的大规模量子系统,引起了广泛关注:量子光学实验正在努力在实验室中实现这种场景,测量与量子源相关的引力场有望提供一些有关引力性质的信息。在理论方面,量子信息工具用于解释结果。然而,关于这些实验可以得出关于引力量子性质的确切结论,仍然存在悬而未决的问题,例如,这种状态下的实验是否能够测试引力场的更多部分。在我的演讲中,我将介绍一个新的结果,其中非局域量子源产生的效应无法使用牛顿势再现,也无法作为经典广义相对论的极限。这些效应原则上可以通过进行干涉实验来测量,并且与引力子发射无关。确定比牛顿势能可再现的更强的引力量子方面,对于证明引力场的非经典性和规划新一代实验(在比迄今为止提出的更广泛的意义上测试引力的量子方面)至关重要。
其中 ¯E 和 ω 分别是状态 i 和 j 的平均能量和能量差。矩阵 R ij 由无规则的一阶数组成,这些数在统计上具有零均值和单位方差。在任何具有固定哈密顿量的给定量子系统中,它们都是通过对哈密顿量进行对角化获得的确定数。然而,对于计算高能态简单算子的少点相关函数而言,这些微观细节是无关紧要的,将 R ij 视为真随机变量即可。这种随机性与量子混沌系统与随机矩阵理论之间的联系紧密相关(详情见[3])。通过全息对偶性,引力物理学对混沌量子系统随机性有了新的认识[4]。如果手头的混沌量子系统是一个大 N 、强耦合的共形场论(即全息 CFT),边界量子系统的热化与引力对偶中的黑洞形成有关 [ 5 – 8 ] 。事实上,这两个过程中明显的幺正性丧失是密切相关的,理解其中一个将有助于理解另一个。事实上,正是出于这个原因,量子热化已经在全息摄影的背景下进行了讨论(例如参见 [ 9 – 20 ] )。
摘要:本文考虑了当物质满足状态方程 P = 0 或 P = − αρ 时(其中 0 < α < 1)时广义 Vaidya 时空的引力坍缩。我们证明,当第 I 类物质场为尘埃时,表观视界将永远不会出现,但现在存在一族指向未来的零径向测地线,其终止于过去的中心奇点。我们还证明,在负压的情况下,引力坍缩的结果可能是裸奇点,表观视界出现并在很短的时间内再次消失。在负压的情况下,我们证明引力坍缩的结果可能是永恒的裸奇点。关键词:引力坍缩;Vaidya 时空;黑洞;裸奇点。 PACS 编号:04.70.—s、04.70.Bw、97.60.Lf
从广义上讲,我的研究兴趣在于引力物理学,量子信息和量子技术领域。目前,我的活性包括广泛的顶级研究,包括宇宙学,黑洞物理学,引力波理论,冷凝物质系统中的模拟引力,量子光学,量子重力,量子引力,弯曲的空间和量子科学和技术中的量子场理论。我是理论和实验性一般相对性小组的成员,以及路易斯安那州立大学的Quantum Science和技术小组
黑洞是宇宙中最神秘的物体之一,但原则上人们对其了解甚少。从根本上理解黑洞及其视界需要将量子力学与广义相对论统一起来,这已被证明是一个非常困难的问题。在本课程中,我们将开发量子黑洞理论的各个方面。从对经典广义相对论中黑洞的彻底分析开始,我们介绍物质场的量子方面,并探索霍金和 Unruh 辐射,从而导致贝肯斯坦-霍金熵和臭名昭著的黑洞信息悖论。理解这两者需要超越经典引力。本课程概述了量子引力方法(例如弦理论)并强调了其中的困难。在最后一章中,本课程探讨了最近关于完全可解的低维量子引力模型的主题。特别是,Jackiw-Teitelboim (JT) 2d 伸缩子引力描述了高维黑洞物理学的近视界近极值状态。此外,学生将进行一个研究项目(以小组形式),并向同学们展示和解释这个令人兴奋的研究领域的一个主题,例如引力冲击波、黑洞膜范式、广义第二定律、量子JT引力、低维引力中的欧几里得虫洞......本课程是对每隔一年提供的“全息摄影”课程的补充。