其中α是定量时空的每个模型的常数特异性[14 - 17]。此外,全息原理[18-20]和随之而来的协变熵结合[21],这意味着这些距离波动在给定的时空体积中相关。此外,Verlinde和Zurek [22,23]和'T Hooft [24,25]的工作表明,这些相关性可能会延伸到横向上的宏观距离(或等效地,沿着因果钻石的边界[26])。这些理论方法评估了量子波动及其在Hori-Zons上的相关性,并通过将因果钻石的边界确定为视野(特别是Rindler Hori-Zons),可以描述量子时空波动的横向相关性。,Verlinde和Zurek假设热力学特性所规定的能量波动会导致公制在台上通过牛顿电势而与横向相关性的视频波动[22]。'thooft提出,如果地平线的量子波动,黑洞可以服从单位性(例如霍金辐射)是隔离纠缠的[27]。这些理论为波动的垂直两点相关函数提供了具体而几乎相同的预测,作为球形谐波的扩展[22,24,28]。以这种方式得出的相关性分解为球形谐波y m y y m在低L模式中的大部分功能,这激发了以下预测,如上所述,横向相关性在宏观角度分离上延伸到宏观的角度分离。此外,已经提出,CMB中温度波动的角功率谱是这种基本分解在通货膨胀范围上量子波动的球形谐波中的基本分解的表现[29]。重要的是,宏观横向相关性意味着波动在激光束或望远镜孔径的典型直径上是连贯的。如果是这种情况,则通过评估远处对象图像的模糊或退化[16,30]的模糊或降解来设置在量子时空波动上[16,30]。鉴于距离量表的量子时空波动与宏观距离上的相关性和相关性,激光干涉仪对它们具有独特的敏感。因此,对这些波动的最严格约束是由现有的干涉量实验设置的。Ligo,处女座和Kagra协作使用的引力波(GW)干涉仪的设计[31]降低了其对量子时空幻影的潜在敏感性。这是因为它们在手臂中使用Fabry – p´errot腔(或折叠臂,如Geo 600中),这意味着单个光子多次横穿相同的距离。此外,这些仪器的输出的频率低于光线交叉频率。这会导致从单个光线中积累的波动中随机检测到的信号与随后的交叉点的信号平均,从而消除了效果[17]。一个旨在检测量子时空波动的干涉测量实验是Fermilab螺旋表,它由两个相同的共同阶层和重生40 m
关于 MPS 基础物理科学研究是 MPS 支持工作的核心主题。MPS 科学的核心领域(天文科学、化学、材料研究、数学科学和物理学)继续推进和转化知识,并支持下一代科学家的发展。MPS 资助的科学涵盖范围广泛:从研究过的最小物体和最短时间尺度到宇宙大小和年龄的距离和时间尺度。MPS 继续培养和支持跨学科科学项目,这些项目的范围和复杂性各不相同,从个人研究人员奖励到大型多用户设施。个人研究人员和小团队获得大多数奖项,但中心、研究所和设施都是 MPS 资助研究不可或缺的一部分。这种学科融合和组织研究人员的各种方式使 MPS 能够投资于引人注目的基础科学,这些科学将支撑和推动未来技术的进步,并帮助支持未来几十年强劲的美国经济。通过其中心和研究所计划,MPS 将继续支持前沿科学和从事从基础科学到转化科学的研究的下一代科学家的发展。MPS 中心和研究所涵盖范围广泛,从解决基础数学挑战到开发新材料。研究工具和基础设施是 MPS 将继续资助的关键重点。天文科学、化学、材料研究和物理学领域的中型研究基础设施对于这些学科的发展仍然至关重要。大型研究基础设施也至关重要,并为与国际组织、其他联邦机构和私人基金会建立伙伴关系提供了机会,阿塔卡马大型毫米/亚毫米阵列 (ALMA)、双子座天文台、大型强子对撞机 (LHC) 和国家高磁场实验室等设施就是明证。大型强子对撞机 (LHC) 的升级工程于 2020 年 4 月开始建设,旨在为 NSF 资助的 LHC 探测器做好粒子加速器高亮度运行的准备,而 Vera C. Rubin 天文台项目正在推进智利塞罗帕琼峰顶的物理基础设施以及最先进的数据管理系统和有史以来建造的最大数码相机。丹尼尔 K. 井上太阳望远镜 (DKIST) 位于夏威夷毛伊岛的哈莱阿卡拉山顶,预计于 2021 年底完工,有望成为世界上最强大的太阳天文台。DKIST 在 2020 财年实现了一个关键里程碑,首次看到太阳光芒,以有史以来最高的分辨率拍摄到太阳表面的壮观图像。自 1990 年以来,它探测到引力波
在天文学/天体物理学中,研究可能在只有少数人的小组内进行,也可能在涉及一千多人的大型联盟内进行,或者介于两者之间。大型联盟通常以特定的观测设施为中心。 大型联盟处理的整体研究主题通常很广泛,可能包括在较小的子单位(科学工作组)内进行的多个特定研究课题。这仍然可以为个别科学家定义自己独特的项目留下充足的空间。 研究问题大多是基础/好奇心驱动的,但处理大型数据集、空间技术、光学/探测器开发和信号处理都有增值渠道。天文学/天体物理学在公众和儿童中非常受欢迎,因此社会影响通常被视为我们的其他增值形式之一。 数据档案的开发对许多项目起着越来越重要的作用。一些设施完全用于公共调查,其数据可供社区免费访问,而其他设施则在专有期(通常为 6-12 个月)后发布其数据。天文台/设施通常会公开征集(每年一到两次)新的观测,各个研究小组/团队提交提案,通过同行评审进行评判和分配。这些设施的认购量通常超额几倍甚至十倍,因此竞争非常激烈。建造仪器的财团也常常通过保证时间的观测获得部分补偿。因此,在很大程度上,数据是我们领域的一种货币形式。 研究项目的时间表差别很大。在某些情况下,可以相对较快地完成(例如基于公共数据、档案研究),而对于在专有期结束时发布的观测项目,时间会稍长一些,对于最大和最复杂的项目(例如涉及新设施或新方法),可能需要几年甚至几十年的时间。 由于天文设施价格昂贵(数百万至数十亿欧元),许多设施都是国际性的,因此我们的领域实际上没有边界。 建造和运营大型国际设施的时间通常比拨款周期长得多(几十年)。寻找确保长期稳定地资助此类项目的方法,是本领域面临的一大挑战,特别是因为资助机构往往区分基础设施建设、运营成本和科学开发。 现代天体物理学中研究的大多数过程都是高度复杂和非线性的,因此建模越来越依赖于半解析和数值方法。大型 HPC 设施的使用越来越多,这是我们领域的一个转变,使我们更接近信息学、物理学和理论分子化学等领域的努力。 我们的领域有许多跨学科联系:除了 HPC 和信息学之外,物理学和数学中也有常见例子(例如,通过荷兰天体粒子物理委员会 CAN 的广义相对论/黑洞/引力波和天体粒子物理等主题),以及化学、生物学和地球科学(例如,行星科学,通过荷兰天体化学网络、DAN 和行星和系外行星计划、PEPSCi 等计划)。
30.1 理论宇宙射线 (CR) 是遍布宇宙的非热粒子群。它们的显著特征可以从其主要的观测特性中推断出来:光谱、成分和到达方向。对于带电 CR,能量从几十 MeV 到接近 1 ZeV,强度在 1 GeV 以上为 ∼ 104 m − 2 s − 1 sr − 1,但差分谱随能量 E 急剧下降,遵循幂律依赖性 E − γ。最显著的光谱特征是在几个 PeV 处的“膝盖”,其中谱指数 γ 从 ∼ 2.7 变为 ∼ 3,“第二个膝盖”在 ∼ 100 PeV 处变为 ∼ 3.3 和在几个 EeV 处的“脚踝”,γ 变为 ∼ 2。 5. 通量在几十 EeV 以上被大大抑制。(有关光谱特征的更详细讨论可参见下文第 30.2.1 和 30.2.2 节。)带电 CR 主要由质子、氦和其他原子核以及电子、正电子和反质子组成。到达方向大多是各向同性的,但在膝点以下和周围,由于源的分布和银河系磁场的特性,观察到有趣的 O(10-4...10-3)各向异性,在最高能量下达到 ∼O(10-1)。伽马射线可分解为来自天体物理源的伽马射线(50 MeV 以上约 6660 [ 1 ],TeV 能量下约 300 [ 2 , 3 ]),以及来自银河系和河外星系的弥散通量,主要表现出对能量的幂律依赖性。高能中微子的观测打开了一扇新的窗户;虽然分布基本上是各向同性的,但已经发现了两个河外星系源以及来自银河系平面的贡献的证据。带电 CR、弥散伽马射线和中微子的能谱如图 30.1 所示。对带电宇宙射线、伽马射线和中微子以及引力波的综合观测(见第 21.2.3 节)为我们了解最极端的天体物理环境提供了有价值的见解,这被称为多信使天体物理学。将所有物种的贡献相加,可得到全粒子谱。虽然长期以来人们认为它是一个没有特征的幂律,直到几个 PeV 的膝盖,但现在人们认识到它具有更多的结构,反映了各个物种的特征。这些特征包含有关宇宙射线加速和传输的重要信息。使用的能量变量是动能 E,即每个核子的动能,对于质量数为 A 的粒子,E n = E/A,或对于电荷数为 Z 的粒子,刚度 R ≡ pc/ ( Ze )(以伏特为单位),p 是粒子的动量;术语“刚度”是指在磁场 B 中抵抗偏转的能力:刚度低(高)的粒子具有小(大)的回旋半径 rg = R /B 。动能与量热仪器的实验特征密切相关,而刚度则是光谱仪器最自然的特征。还要注意,相对论性原子核的能量损失很小,它们的传输由磁场决定,因此它只取决于刚度。核子强度 J 也称为弥散通量,是通过能量在区间 [ E, E + d E ] 内的粒子的微分数 d N 来定义的,这些粒子在时间 dt 内从立体角 d Ω 穿过面积 d A:d N = J d E d A d Ω dt 。其各向同性部分与微分密度 ψ = (4 π/v ) J 有关,v 为粒子速度,与相空间密度 f 有关,即 J = p 2 f 。注意,强度也可以根据每个核子的粒子能量或刚度来定义。为了强调这一点,强度通常写为 d J/ d E 、d J/ d En 或 d J/ d R 。在探测 CR 方面,有两类技术 [ 4 ]。直接观测(见第 30.2.1 节)利用粒子物理探测器(例如跟踪器、光谱仪和量热仪)中的 CR 相互作用。鉴于此类仪器的曝光有限且光谱急剧下降,目前仅在低于 ∼ 100 TeV 时才切合实际。在间接观测(见第 30.2.2 节)中,
1 欧洲核子研究中心 (CERN),CH-1211 日内瓦,瑞士 2 CQTA,德国电子同步加速器 DESY,Platanenallee 6,15738 Zeuthen,德国 3 塞浦路斯研究所基于计算的科学技术研究中心,20,Constantinou Kavafi str.,2121 尼科西亚,塞浦路斯 4 IBM Quantum,IBM Research – 苏黎世,8803 R¨uschlikon,瑞士 5 塞浦路斯大学物理系,PO Box 20537,1678 尼科西亚,塞浦路斯 6 IBM Quantum,IBM Research - 1101 Kitchawan Rd,Yorktown Heights,NY,美国 7 LBNL 物理部门 - M/S 50A5104 1 Cyclotroner Rd Berkeley,CA,美国 8 德国电子同步加速器 DESY,Notkestrasse 85, 22607 汉堡,德国 9 亚琛工业大学,Templergraben 55, 52062 亚琛,德国 10 TIF 实验室,Dipartimento di Fisica,米兰大学和 INFN Sezione di Milano,意大利米兰 11 柏林洪堡大学物理学研究所,牛顿海峡15,12489 柏林,德国 12 ⟨ aQa L ⟩ 应用量子算法,莱顿,荷兰 13 橡树岭国家实验室物理分部,橡树岭,田纳西州,37831,美国 14 奥维耶多大学科学学院计算机科学系,33007,阿斯图里亚斯,西班牙 15 莱布尼茨汉诺威大学理论物理研究所,30167 汉诺威,德国 16 德国联邦物理技术研究院,38116 不伦瑞克,德国 17 跨学科研究领域“物质构建模块和基本相互作用”(TRA Matter)和亥姆霍兹辐射与核物理研究所(HISKP),波恩大学,Nußallee 14-16,53115 波恩,德国 18 大学理论物理研究所因斯布鲁克大学,6020 因斯布鲁克,奥地利 19 奥地利科学院量子光学与量子信息研究所,6020 因斯布鲁克,奥地利 20 德国慕尼黑大学物理系和阿诺德索末菲理论物理中心 21 德国慕尼黑量子科学与技术中心 22 洛桑联邦理工学院(EPFL)物理研究所,CH-1015 洛桑,瑞士 23 巴黎萨克雷大学,CNRS/IN2P3,IJCLab,91405 奥赛,法国 24 约克大学物理与天文系,加拿大安大略省多伦多,M3J 1P3 25 帕多瓦大学物理与天文系,V. Marzolo 8, I-35131 帕多瓦,意大利 26 INFN - Sezione di Padova,Via Marzolo 8,35131 帕多瓦,意大利 27 Nikhef – 国家亚原子物理研究所,科学园 105,1098 XG 阿姆斯特丹,荷兰 28 马斯特里赫特大学引力波与基础物理系,6200 MD 马斯特里赫特,荷兰 29 东京大学国际基本粒子物理中心 (ICEPP),7-3-1 本乡,文京区,东京 113-0033,日本 30 IBM Quantum,IBM 德国研究与开发有限公司 - Schoenaicher Str. 220,71032 Boeblingen,德国 31 巴斯克地区大学 UPV/EHU 物理化学系,Box 644,48080 毕尔巴鄂,西班牙 32 多诺斯蒂亚国际物理中心,20018 多诺斯蒂亚-圣塞瓦斯蒂安,西班牙 33 EHU 量子中心,巴斯克大学 UPV/EHU,PO Box 644,48080 毕尔巴鄂,西班牙 34 IKERBASQUE,巴斯克科学基金会,Plaza Euskadi 5,48009 毕尔巴鄂,西班牙 35 特伦托大学物理系,via Sommarive 14, I–38123, Povo, 特伦托,意大利 36 INFN-TIFPA 特伦托基础物理和应用研究所,via Sommarive 14, I–38123,特伦托,意大利 37 Instituto Superior T´ecnico,Dep. F´ısica,葡萄牙里斯本 38 先进材料物理与工程中心 (CeFEMA),Instituto Superior T´enico,葡萄牙里斯本, 39 材料与新兴技术物理实验室 (LaPMET),葡萄牙 40 费米国家加速器实验室,Kirk and, Pine St, Batavia, IL 60510, USA 41 Instituut-Lorentz, Universiteit莱顿, PO Box 9506, 2300 RA Leiden, 荷兰
