1. 使用重铬酸钾通过内部指示剂法测定铁 2. 强酸中和强碱的热量 3. 测定水溶液中 1-丁醇的表面过量 4. 研究氧化还原反应动力学 5. 利用阳光进行蓝图打印 6. 强酸与强碱以及强酸与弱碱的 pH 滴定 7. 用比色法测定 Fe(III) 8. 用 EDTA 络合滴定法测定水的硬度 9. 测定乙二醇-水混合物的粘度 10. 强酸与强碱以及强酸与弱碱的电导滴定
b)详细解释砷的限制测试。c)定义标准解决方案并讨论主要和次要标准。d)写下非水滴定的应用。Q.3回答以下内容。 16 a)用高氯酸解释弱碱的非水滴定。 b)解释用于确定非水滴定终点的方法。 Q.4回答以下内容。 16 a)解释Lowry-Bronsted和Lewis酸碱理论。 b)在自然衍生的增稠剂上写下注释。 Q.5回答以下内容。 16 a)提及并解释任何六种杂质及其在原材料中的控制。 b)解释氯化物和硫酸盐的极限测试。 Q.6回答以下内容。 16 a)解释在非水滴定中使用的晶体紫色和Oracet蓝-B指示器。 b)用例如缓冲作用的详细说明。Q.3回答以下内容。16 a)用高氯酸解释弱碱的非水滴定。b)解释用于确定非水滴定终点的方法。Q.4回答以下内容。 16 a)解释Lowry-Bronsted和Lewis酸碱理论。 b)在自然衍生的增稠剂上写下注释。 Q.5回答以下内容。 16 a)提及并解释任何六种杂质及其在原材料中的控制。 b)解释氯化物和硫酸盐的极限测试。 Q.6回答以下内容。 16 a)解释在非水滴定中使用的晶体紫色和Oracet蓝-B指示器。 b)用例如缓冲作用的详细说明。Q.4回答以下内容。16 a)解释Lowry-Bronsted和Lewis酸碱理论。b)在自然衍生的增稠剂上写下注释。Q.5回答以下内容。 16 a)提及并解释任何六种杂质及其在原材料中的控制。 b)解释氯化物和硫酸盐的极限测试。 Q.6回答以下内容。 16 a)解释在非水滴定中使用的晶体紫色和Oracet蓝-B指示器。 b)用例如缓冲作用的详细说明。Q.5回答以下内容。16 a)提及并解释任何六种杂质及其在原材料中的控制。b)解释氯化物和硫酸盐的极限测试。Q.6回答以下内容。 16 a)解释在非水滴定中使用的晶体紫色和Oracet蓝-B指示器。 b)用例如缓冲作用的详细说明。Q.6回答以下内容。16 a)解释在非水滴定中使用的晶体紫色和Oracet蓝-B指示器。b)用例如缓冲作用的详细说明。
纳米药物是一种纳米级实体,通常由载有治疗药物的药物载体组成。这些纳米药物的主要作用是将生物活性药物输送到患病部位,同时防止其在健康组织中释放,从而提高治疗效果并降低毒性。在寻找合适的载体的过程中,人们研究了多种纳米材料作为潜在的纳米药物,包括无机金属、聚合物和脂质。在过去的四十年中,加拿大的研究人员在纳米技术发展中发挥了核心作用,特别是在脂质基纳米药物领域。脂质基纳米药物的发展始于 1965 年 Bangham 等人发现多层脂质体。1 随后,Gregoriadis 等人证明药物和蛋白质可以封装在脂质体内。 2 20 世纪 80 年代,加拿大科学家开发出一种高压挤出技术,制造出均质单层脂质体系统,从而使脂质体成为一种药物输送系统 3 ,其他人则发现了“远程装载”工艺,利用 pH 梯度将弱碱性药物装载到脂质体中 4 , 5
仙贡木(Falcataria moluccana)是印度尼西亚人工林中占主导地位的速生木材之一。需要利用磁铁矿纳米粒子来改善和扩大仙贡木的质量和利用率。该研究旨在研究磁铁矿纳米粒子浸渍处理对仙贡木物理和磁性能的影响。采用共沉淀法以铁离子混合物和弱碱(NH 4 OH)的前体溶液制备磁铁矿纳米粒子。处理包括未处理、1% 和 5% 磁铁矿纳米粒子。重量百分比增益 (WPG)、膨胀效果 (BE)、抗膨胀效率 (ASE) 和密度随着浓度的增加而趋于增加。方差分析表明,处理显著影响处理过的仙贡木的 WPG、BE、ASE 和密度。扫描电子显微镜和能量色散 X 射线光谱分析表明木材细胞膜中有 Fe 沉积。 X射线衍射分析发现,随着结晶度的降低和浓度的增加,衍射图上出现了磁性峰。此外,傅里叶变换红外光谱分析揭示了Fe-O功能基团。基于振动样品磁强计研究,Sengon磁木被归类为具有温和磁性的超顺磁性材料。
幽门螺杆菌感染和 Zollinger-Ellison 综合征,以及预防高危患者(年龄 > 65 岁,有胃肠道溃疡病史或同时接受抗血小板、抗凝或皮质类固醇治疗)的非甾体抗炎药 (NSAID) 相关胃肠道病变(Strand 等人,2017 年)。许多此类疾病通常需要长期治疗,这增加了患者发生临床上显著的药物相互作用的可能性。此外,标签外处方已被广泛报道,特别是在功能性消化不良和预防非风险患者 NSAID 引起的胃十二指肠病变方面(Lassalle 等人,2020 年)。自 1980 年代后期推出市场以来,PPI 在许多国家的使用都有所增加。例如,在法国,2015 年有超过 1500 万拥有医疗保险的人(占法国成年人口的近三分之一)是 PPI 使用者(Singh 等人,2018 年;Lassalle 等人,2020 年)。在一项研究中,三分之一的患者无法确定 PPI 指征,四分之三的 NSAID 预防性处方没有发现可测量的风险因素(Lassalle 等人,2020 年)。大约 20% 的癌症患者使用 PPI(Kinoshita 等人,2018 年;Tvingsholm 等人,2018 年;Sharma 等人,2019 年);然而,PPI 通常会被过量用于治疗化疗的副作用(如 GERD)或作为与皮质类固醇或 NSAID 联合治疗的预防措施(Lassalle 等人,2020 年)。总体而言,PPI 被认为不良事件很少,因为它们通常耐受性良好。然而,据报道,PPI 与胃肠道疾病(恶心、腹痛、传输障碍)、离子吸收障碍(低镁血症、铁缺乏、维生素 B12 缺乏)、肾衰竭、感染(肺炎、艰难梭菌感染、腹膜炎)和骨折有关(Singh 等人,2018 年;Yibirin 等人,2021 年)。此外,PPI 还参与各种药物 - 药物相互作用 (DDI) (Wedemeyer 和 Blume,2014 年;Strand 等人,2017 年;Patel 等人,2020 年;Uchiyama 等人,2021 年)。通过提高胃液 pH 值,PPI 会影响胃液 pH 依赖性药物的吸收。事实上,某些弱碱性药物的胃液 pH 值升高会导致溶解度降低,随后的吸收率也会降低 (Wedemeyer 和 Blume,2014 年;Patel 等人,2020 年)。PPI 也可能影响药物消除,因为它们是有机阳离子转运蛋白 (OCT,参与底物药物的肾脏排泄) 和 P-糖蛋白流出转运蛋白的潜在抑制剂 (Wedemeyer 和 Blume,2014 年;Patel 等人,2020 年)。 PPI 主要在肝脏中通过细胞色素 P450 酶 (CYP) 系统代谢,主要是 CYP2C19 和 CYP3A4 ( Wedemeyer and Blume, 2014 )。它们能够作为 CYP 的抑制剂或诱导剂;抑制 CYP 会增加全身对药物的暴露量 (Patel 等人,2020 年)。奥美拉唑对 CYP2C19 具有高亲和力,对 CYP3A4 具有中等亲和力,因此具有相当大的 DDI 潜力 (Wedemeyer and Blume, 2014 年)。埃索美拉唑也能在临床上显著抑制 CYP2C19,而其他 PPI 对 CYP2C19 的抑制在临床上并不重要 (Patel 等人,2020 年)。然而,只有少数涉及 PPI 的 DDI 具有临床意义 (Wedemeyer and Blume, 2014 年)。尽管如此,