甲脒铅三碘化物 (FAPbI 3 ) 已成为金属卤化物钙钛矿家族中高效、稳定的钙钛矿太阳能电池 (PSC) 的有希望的候选者,尤其是与早期的甲基铵铅三碘化物 (MAPbI 3 ) 原型相比。这是因为 FAPbI 3 具有更窄的带隙能量 ≈ 1.45 eV——更接近 Shockley-Queisser 最优 [1]——并且比 MAPbI 3 更热稳定。[2] 然而,α 相 FAPbI 3 的形成通常需要高温退火 (≥ 150 ° C) 数十分钟,[3] 而获得的 α -FAPbI 3 在室温下是亚稳态的,因为它会迅速降解为光惰性的非钙钛矿同质异形体 (δ-FAPbI 3 )。 [4] 钙钛矿相的亚稳态归因于甲脒(FA +)的尺寸相对较大,导致Gold-schmidt容忍因子> 1,从而驱动六方晶体结构而不是立方晶体结构的形成。[5]
甲脒铅三碘化物 (FAPbI 3 ) 已成为金属卤化物钙钛矿家族中高效、稳定的钙钛矿太阳能电池 (PSC) 的有希望的候选者,尤其是与早期的甲基铵铅三碘化物 (MAPbI 3 ) 原型相比。这是因为 FAPbI 3 具有更窄的带隙能量 ≈ 1.45 eV——更接近 Shockley-Queisser 最优 [1]——并且比 MAPbI 3 更热稳定。[2] 然而,α 相 FAPbI 3 的形成通常需要高温退火 (≥ 150 ° C) 数十分钟,[3] 而获得的 α -FAPbI 3 在室温下是亚稳态的,因为它会迅速降解为光惰性的非钙钛矿同质异形体 (δ-FAPbI 3 )。 [4] 钙钛矿相的亚稳态归因于甲脒(FA +)的尺寸相对较大,导致Gold-schmidt容忍因子> 1,从而驱动六方晶体结构而不是立方晶体结构的形成。[5]
抗菌素耐药性是对健康和发展的全球挑战,而人类、动物健康和食品生产中抗菌素/抗生素的广泛过度使用或滥用加剧了这一问题。泰勒虫病(一月病)是津巴布韦四大蜱传疾病之一,即无形体病(瘿病)、巴贝斯虫病(红水病)、泰勒虫病(一月病)和埃立克体病(心水病)。津巴布韦兽医服务部 (DVS) 报告称,65% 的牛死亡归因于蜱传疾病,而农民广泛使用四环素类药物进行化学预防和(代谢预防)治疗。在此背景下,生产蜱传疾病疫苗被津巴布韦政府和资源合作伙伴视为优先事项。此外,考虑到抗菌药物耐药性的跨国和多部门性质,三方(四方)——粮食及农业组织(FAO)、世界动物卫生组织(OIE)和世界卫生组织(WHO)已加大力度,
几十年来,人们一直在积极研究在极端压力下由碳基聚合物、化合物或其他碳同质异形体(即石墨)形成钻石的过程。1–12 钻石可以通过极端加热和压缩某些塑料、1 甲烷、2,3 和爆炸物形成。10,12 例如,在直线加速器相干光源 (LCLS) 实验中使用原位 X 射线衍射在 139 至 159 GPa 的双冲击聚苯乙烯 (CH) 中检测到立方钻石,这表明碳和氢键的断裂以及碳重组为钻石仅在纳秒时间尺度上即可发生。1 这里给出的结果表明,立方钻石也在 Stycast 1266 环氧树脂(C:H:Cl:N:O.27:38:1:1:5) (参考文献 13) 中形成,该混合物受到 80 和 148 GPa 的双重冲击。这些结果表明,冰巨行星内部的化学和热力学条件适合钻石的形成,其内冰层主要由 CH 4 、 NH 3 和 H 2 O 组成。
简介:激光烧蚀元素同位素光谱仪系统 (LABEISS) 是一种面包板仪器,具有两种主要技术——激光诱导击穿光谱 (LIBS) 和激光烧蚀分子同位素光谱 (LAMIS)。此外,LABEISS 还能够将拉曼光谱、激光诱导荧光和被动反射作为支持技术。LIBS 已成为行星探索的主要技术,最著名的是 ChemCam 和 SuperCam 仪器,后者最近搭载在 NASA 的 Mars2020 毅力号探测器上 [1, 2, 3]。LIBS 是一种快速获取地质样品、土壤样品和表面清洁(使用重复激光烧蚀)中主要和次要元素分析结果的方法。与 LIBS 相比,LAMIS 基于分子发射的同位素位移(所谓的同位素异形体),该位移的时间延迟由激光烧蚀过程中等离子体和原子的结合时间定义 [4, 5]。LAMIS 已成为 LIBS 的一种有前途的补充技术,因为它可以表征目标的同位素特征,从而提供同位素区分。拉曼光谱 (RS) 发生在分子被激发源激发并通过分子键或晶格的振动、旋转或拉伸产生非弹性散射时。每个谱带对应于分子键激发波长的不同拉曼波数位移,可用于识别或“指纹识别”多种材料。
我们开发了下一代机器人立体定位平台,用于小动物,结合了三维 (3D) 颅骨轮廓仪子系统和完整的六自由度 (6DOF) 机器人平台,以提高空间精度和手术速度。3D 颅骨轮廓仪基于结构照明,其中视频投影仪将一系列水平和垂直线图案投射到动物颅骨上,并由两个二维 (2D) 常规 CCD 相机捕捉,以基于几何三角测量重建精确的 3D 颅骨表面。使用重建的 3D 颅骨轮廓,可以使用基于 Stewart 设计的 6DOF 机器人平台引导和重新定位颅骨,以精确对准手术工具,以达到特定的大脑目标。使用机械测量技术对系统进行了评估,并使用琼脂脑模型演示了平台的精确瞄准。麻醉的单角沙鼠也用于该系统,通过使用玻璃移液器注射染料来瞄准梯形体 (MNTB) 的内侧核。切除的脑切片荧光成像证实了瞄准脑核的准确性。结果表明,这种新的立体定位系统可以提高神经科学研究中小规模脑部手术的准确性和速度,从而加速神经科学发现并降低实验动物的流失率。
纳米材料和生物结构文摘第 18 卷,第 1 期,2023 年 1 月 - 3 月,第 55 - 68 页琥珀酸物种对甘氨酸单晶的结构、光谱、光学、Z 扫描、倍频、光电导和抗菌性能的影响 NS Priya a、SA Chudar Azhagan b、* a 印度哥印拜陀尼赫鲁工程技术学院物理系 b 印度哥印拜陀政府技术学院物理系以琥珀酸为添加剂,通过传统溶剂缓慢蒸发路线生长甘氨酸单晶。研究了琥珀酸对甘氨酸同质异形体的生长、光学和介电性能的影响。通过振动 FTIR 光谱光度计鉴定了功能团的存在。较高频率范围内的低介电常数和介电损耗证明生长的晶体可用于倍频应用。计算了生长晶体的激光损伤阈值能量。通过 Z 扫描实验评估了添加琥珀酸的甘氨酸晶体的三阶非线性磁化率 χ (3) (esu)。 (2022 年 8 月 14 日收到;2023 年 1 月 12 日接受) 关键词:γ-甘氨酸、琥珀酸、介电材料、光子应用 1. 简介寻找新的复杂 NLO 材料是当前研究扩展科学和通信技术的基本部分。铁电材料在光电子领域具有广泛的工业应用,例如电容器、军事服务、执行器、电信、非易失性存储设备、自动门禁系统、高性能栅极绝缘体和医疗设备等 [1-2]。铁电材料因其明确的介电、压电和热电特性而成为广泛电子和机电一体化设备中的首选材料。近年来,具有非线性光学 (NLO) 特性的铁电材料因其在光电子和光子技术领域的潜在应用而备受关注。铁电琥珀酸具有良好的热电性能。琥珀酸是一种天然存在的有机材料,属于二羧酸,是三羧酸循环的中间体。它通常用于生物和工业应用,也用作红外 (IR) MALDI 分析方法中的基质 [3-4]。目前,琥珀酸晶体广泛用于制造高电子迁移率晶体管 (HEMT)。琥珀酸与有机材料的结合提高了其铁电性能 [5]。在多晶型晶体中,氨基酸甘氨酸是最简单的晶体,在环境条件下表现出三种不同的多晶型,即 α-甘氨酸、β-甘氨酸和 γ-甘氨酸。甘氨酸的有机和无机复合物最近因其铁电、介电和非线性光学特性而受到科学界的关注。γ-甘氨酸晶体表现出强压电和非线性光学效应 [6-8]。甘氨酸同质异形体的非线性和介电响应是器件制造应用的重要参数。为了制造非线性光学器件,材料应在高频区域具有低介电常数和低介电损耗。此外,还要减少微电子工业中的 R c 延迟。如今,各种研究人员报告了 γ-甘氨酸单晶的一些重要特性 [9-12]。因此,在目前的研究中,已从琥珀酸添加剂环境中收获了 γ-甘氨酸单晶。
阿尔茨海默氏病(AD)是最普遍的神经退行性疾病,也是老年痴呆症的主要原因。这种疾病对个人及其家人产生了很大的影响,代表了日益增长的公共卫生和社会经济负担。尽管如此,没有有效的治疗选择可以治愈或改变疾病进展,从而强调了确定新的治疗靶标的必要性。突触功能障碍和丧失是阿尔茨海默氏病的早期病理特征,与认知能力下降相关,并随着神经元死亡而进行。在过去几年中,E3泛素连接酶后期促进复合物/循环体(APC/C)已成为突触可塑性和神经元存活的关键调节剂。到此末端,连接酶结合了其大脑中的主要激活剂CDH1。然而,促进复合物/循环体-CDH1复合物的灭活剂触发了树突破坏,突触损失和神经变性,从而导致记忆和学习障碍。有趣的是,与阿尔茨海默氏病的发作和进展有关的寡聚淀粉样蛋白β(Aβ)肽会诱导CDH1磷酸化,从而导致后期促进复合/环形体CDH1复合物复合物隔离和灭活。这会导致几种后期的异常积累,促进复合物/旋风cdh1靶标在阿尔茨海默氏病损坏的地区,包括Rock2和Cyclin b1。在这里,我们回顾了后期促进复合物/循环体 - CDH1失调在阿尔茨海默氏病发病机理中的功能,在其分子靶标引起的神经毒性中特别注意。了解后期促进复合物/循环体CDH1靶向底物在阿尔茨海默氏病中的作用可能有助于开发这种神经系统疾病的新有效疾病改良治疗。
图 2 蒙古沙鼠梯形体 (TB) 髓鞘的高分辨率图像。抗神经丝相关抗原 (3A10) (a – c) 和神经丝重链 (NFH) (d – f) 的抗体用作轴突标记物。抗髓鞘碱性蛋白 (MBP) 的抗体显示髓鞘。在出生后第 6 天 (a、a')、出生后第 9 天 (b、b 0 ) 和出生后第 13 天 (c、c 0 ) 从 TB 区域沙鼠大脑冠状振动切片中获取共聚焦单光学图像。在出生后第 7 天 (d、d 0 )、出生后第 10 天 (e、e') 和出生后第 14 天 (f、f 0 ) 从 TB 区域沙鼠大脑矢状振动切片中获取共聚焦单光学切片。 (a – f) 轴突标记物 3A10 (a – c) 和 NFH (d – f) 以红色显示,MBP 免疫反应性以绿色表示。(a' – f 0) 相应的 MBP 染色图像。出生后第 6 天 (a、a') 可以看到短的、有时是点状的髓鞘碎片,其间散布着较长的无髓鞘间隙。少突胶质细胞 (白色星号) 积极产生 MBP,用抗 MBP 抗体标记。在出生后第 7 天的矢状切面中,可以看到 TB 纤维的横截面。一小部分 TB 轴突被 MBP 包围,用抗 MBP 抗体标记。出生后第 9 天 (b、b 0),TB 中的大部分轴突都是髓鞘化的。然而,人们可以很容易地注意到一些轴突没有被髓鞘包裹 (白色箭头,b)。在出生后第 10 天的矢状切面上,大多数轴突被髓鞘包裹,但有些没有(白色箭头,e)。到出生后第 13 天(c,c 0)可以看到髓鞘包裹所有轴突。请注意,髓鞘轴突排列非常紧密,以至于很难勾勒出属于单个轴突的髓鞘。在出生后第 14 天的矢状切面上,TB 区域的所有轴突横截面都被髓鞘包裹。比例尺:20 μ m。
随着半导体的物理尺寸达到极限,以生成性人工智能为代表的对大规模计算能力的需求正在推动芯片上晶体管元件密度的持续增加。 FinFET结构可提高元件密度,同时抑制传统平面场效应晶体管(FET)小型化所导致的漏电流,目前该结构已开始量产,未来将向GAA(Gate-All-Around)纳米片结构迈进,该结构可将电流通道的控制面从FinFET的三面增加到四面。因此,晶体管的结构变得更加复杂,导致量产时产品良率下降、成本增加。另一方面,人们担心所需计算能力的扩大将超过半导体元件密度的扩大,导致电路规模超过曝光的光罩极限。在此背景下,为了缓解成本上升的问题,一种根据架构将半导体芯片物理地划分为芯片小体(chiplet)的方法已经投入量产。此外,未来还将考虑采用安装技术对适合光罩极限的芯片进行封装和扩大的方法。此外,Chiplet超越了单片芯片的简单划分,可以把不同代半导体芯片或已有芯片组合起来,有望缩短开发周期,改变供应链,有望成为未来半导体产业的一大趋势。